CONTENTS

PREFACE

1 GENERAL INTRODUCTION
1.1 Brain as a complex system 6
1.2 Nonlinearity in the Neural System 9
1.3 Analysing Physiological Time series 13
1.4 Nonlinear Brain analysis 15
1.5 Organization of the thesis 16

2 NONLINEAR SYSTEMS: A THEORETICAL APPROACH 21
2.1 Nonlinear systems: Terminology and definitions 22
2.2 Cauchy-Lipschitz condition 25
2.3 Conservative vs. Dissipative systems 27
2.4 Stability of equilibrium points 28
2.5 Linear stability analysis 29
2.5.1 Limit Cycles 35
2.6 Poincare Map 36
2.7 Lyapunov's Theorems of stability 38
2.8 Chaotic dynamics 40
2.9 Bifurcations in dynamical systems 42
2.10 Dimension and Entropy measures 44
2.11 Lyapunov exponents 48
2.12 Stochastic resonance 50
2.13 Conclusion 52

3 CURRENT TECHNIQUES IN TIME SERIES ANALYSIS- AN OVERVIEW 53
PART I - Time Series Analysis of Complex Systems
3.1 Dynamical systems and signals 54
3.2 Linear methods of signal analysis 55
3.3 Nonlinear time series analysis 58

TECHNIQUES IN NONLINEAR TIME SERIES ANALYSIS OF SIGNALS 65
3.4 Reconstruction of Phase space 65
3.4.1 Embedding theorems 68
3.5 Choice of embedding dimension 70
5.3.2 Pathological condition of epilepsy 172
5.4 Conclusion 174

6 EEG COMPLEXITY AS A TOOL TO PROBE NEURAL DYNAMICS 179
6.1 Complexity measures for time series data 182
6.2 Approximate entropy as a Complexity measure 186
6.3 Gender difference reflected in EEG complexity analysis 189
6.3.1 Experimental details 190
6.3.2 Complexity analysis 192
6.3.3 Discussions on the observations of the gender based study 202
6.4 Complexity analysis of various brain states 204
6.4.1 Sample Entropy: Quantification of regularity of experimental data 206
6.4.2 Classification of data 211
6.4.3 Complexity analysis using SampEn 211
6.5 Conclusion of the complexity approach to EEG analysis 224

7 SYNCHRONISATION PHENOMENON IN COGNITIVE PROCESSES 227
7.1 Theoretical background on synchronization 231
7.1.1 Entrainment of a periodic oscillator 227
7.1.2 Noisy oscillators 235
7.1.3 Chaotic oscillators 239
7.2 Towards Data Analysis: Quantifying strength of synchronization 241
7.3 Application of phase synchronization to normal and pathological EEG signals 244
7.3.1 No-Task passive states 244
7.3.2 Epileptic condition 256
7.4 Phase synchrony to study effect of fatigue on mental tasks 262
7.4.1 Detecting the directionality of coupling from phase 264
7.4.2 Data acquisition and classification 266
7.4.3 Phase synchrony and directional coupling analysis 268
7.5 Concluding remarks 276

8 NEURAL MODELS 279
8.1 Modeling the brain 280
8.2 Artificial neural networks and models of neocortex 282
8.3 Maps in the Brian 289
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>Formulation of nonequilibrium statistical mechanics</td>
<td>293</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Schematics of SVD</td>
<td>295</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Eigen function representation</td>
<td>296</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Inverse scattering calculation</td>
<td>297</td>
</tr>
<tr>
<td>8.5</td>
<td>Map construction</td>
<td>298</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Topological manifolds</td>
<td>302</td>
</tr>
<tr>
<td>8.6</td>
<td>Conclusion</td>
<td>307</td>
</tr>
<tr>
<td>9</td>
<td>CONCLUSIONS AND THEMES FOR FUTURE RESEARCH</td>
<td>309</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY