CONTENTS

CHAPTER I GENERAL INTRODUCTION

1.0 INTRODUCTION 1

1.1 ZEOLITES 2

1.1.1 Structural overview 3

1.1.2 Synthesis of zeolites 5

1.1.3 Classification of zeolites 8

1.2 PHYSICO - CHEMICAL CHARACTERIZATION OF ZEOLITES

1.2.1 Powder X-ray diffraction 11

1.2.2 Infra-red spectroscopy 12

1.2.3 Nuclear magnetic resonance spectroscopy 13

1.2.4 Thermal analysis 13

1.2.5 Sorption and diffusion properties 13

1.3 MODIFICATION OF ZEOLITES

1.3.1 Isomorphous substitution 15

1.3.2 Cation exchange 16

1.3.3 Metal loading 17

1.4 NATURE OF ACTIVE SITES

1.4.1 Acidity 18

1.4.2 Basicity 19

1.5 CATALYSIS BY ZEOLITES

1.5.1 Shape selectivity in zeolites 21

1.5.1.1 Reactant shape selectivity 21

1.5.1.2 Product shape selectivity 22

1.5.1.3 Restricted transition state shape selectivity 22

1.5.1.4 Molecular traffic control 24

1.5.2 Zeolite catalysts in petrochemical processes 25

1.5.3 Zeolite catalysts for synthesis of organic compounds 25
CHAPTER II EXPERIMENTAL - SYNTHESIS AND CHARACTERIZATION OF VARIOUS ZEOLITES

2.1 MATERIALS 52
2.2 PROCEDURES 52

2.2.1 Synthesis of zeolites
2.2.1.1 Zeolite beta 52
2.2.1.2 ZSM - 5 55
2.2.1.3 Pretreatment procedures 56
2.2.1.4 H - form 57
2.2.1.5 Na - form 57
2.2.1.6 RE - Y 57

2.2.2 Catalyst characterization 57
2.2.2.1 Chemical analysis 57
2.2.2.2 Powder X-ray diffraction 58
2.2.2.3 Infra-red spectroscopy 58
2.2.2.4 Thermal analysis 59
2.2.2.5 Scanning electron microscopy 59
2.2.2.6 Surface area measurements 60
2.2.2.7 Temperature programmed desorption of ammonia 61

2.2.3 Results and discussion
2.2.3.1 Synthesis 61
2.2.3.2 Characterization 62

2.2.4 Catalytic reactions 73
REFERENCES 75
CHAPTER III PROPIONYLATION OF TOLUENE AND ANISOLE

3.1 PROPIONYLATION OF TOLUENE

3.1.1 Introduction 76

3.1.2 Experimental 77

3.1.2.1 Catalyst preparation 77

3.1.2.2 Catalyst testing 78

3.1.3 Results and discussion

3.1.3.1 Activity of various catalysts 78

3.1.3.2 Effect of reaction temperature 81

3.1.3.3 Influence of SiO$_2$/Al$_2$O$_3$ molar ratio 84

3.1.3.4 Influence of catalyst concentration 84

3.1.3.5 Effect of toluene/PC molar ratio 87

3.1.3.6 Recycling of the catalyst 87

3.1.3.7 Mechanism 91

3.1.4 Conclusions 91

3.2 PROPIONYLATION OF ANISOLE

3.2.1 Introduction 92

3.2.2 Experimental 93

3.2.3 Results and discussion

3.2.3.1 Activity of various catalysts 93

3.2.3.2 Effect of reaction temperature 95

3.2.3.3 Effect of SiO$_2$/Al$_2$O$_3$ molar ratio 98

3.2.3.4 Effect of catalyst concentration 98

3.2.3.5 Effect of anisole/PC molar ratio 98

3.2.3.6 Catalyst recycle 102

3.2.3.7 Mechanism 102

3.2.4 Conclusions 102

REFERENCES 106
CHAPTER IV BENZOYLATION OF O-XYLENE

4.1 Introduction 107
4.2 Experimental 109
4.2.1 Catalyst preparation 109
4.2.2 Catalyst characterization 109
4.2.3 Catalyst testing 109

4.3 Results and Discussion

4.3.1 Catalyst characterization 110
4.3.2 Activity of various catalysts 111
4.3.3 Duration of the run 114
4.3.4 Effect of SiO₂/Al₂O₃ ratio 115
4.3.5 Effect of reaction temperature 116
4.3.6 Effect of catalyst concentration 116
4.3.7 Effect of o-xylene to BOC molar ratio 116
4.3.8 Catalyst recycle 121
4.3.9 Benzoylation of isomeric xylenes 124
4.3.10 Mechanism 126

4.4 Conclusions 126

REFERENCES 128

CHAPTER V BENZYLATION OF O-XYLENE

5.1 Introduction 131
5.2 Experimental 133
5.2.1 Materials 133
5.2.2 Characterization 133
5.2.3 Acidity of zeolites 133
5.2.4 Catalytic reaction experiments 134

5.3 Results and Discussion

5.3.1 Catalyst characterization 134
5.3.2 Catalytic activity 135
5.3.3 Influence of SiO₂/Al₂O₃ molar ratio 137
CHAPTER VI SUMMARY AND CONCLUSIONS

6.1 Summary 154
6.2 Conclusions 157
6.3 Scope for further work 158