SUMMARY

Cigarette Smoking is one of the major worldwide health problems and the largest preventable cause of diseases and premature death. Tobacco Smoking is associated with negative effect on several types of cognitive functions which can be assessed by reaction time. The delayed or fast reaction indicates deteriorated or improved processing capacity of central nervous system and sensory motor performance. In the present study the audio reaction time (ART) and visual reaction time (VRT) in smokers, dipping tobacco users under various age groups were studied.

The audio and visual reaction time was significantly higher in older individuals as compared to younger individuals. Similarly in each age group dipping tobacco users and smokers differed significantly from control as for audio and visual reaction time and the dipping tobacco users and smoker reduction in ART and VRT were observed which shows acceleration of the response to stimulus.

As regards the effect of smoking and dipping tobacco users on blood pressure, all the four age groups differed significantly from each other and age group 41-50 yrs showed highest systolic blood pressure. Within each age group systolic blood pressure for dipping tobacco users and smokers was significantly higher as compared to control.

As regards in concern with diastolic blood pressure, in this study all the four age groups differed significantly. Age group 41-50 yrs showed highest diastolic blood pressure. In each age group dipping tobacco users and smokers differed significantly from control and dipping tobacco users showed highest diastolic blood pressure.
As regards in concern with pulse rate, age groups differed significantly and in each age group dipping tobacco users differed significantly from smokers and control. Elder age group showed highest pulse rate and in each groups dipping tobacco users showed highest pulse rate.

Much remains to be learned about the neuro–regulatory mechanisms by which nicotine exerts its effect.

In future newer research approaches e. g. blood flow and metabolic studies using techniques such as positron emission tomography may shed light on the particular neuro–regulatory pathways involve in human smoking. These technologies should facilitate the specification of the neural locus of action of nicotine in relation to its behavioural and physiological effects (Pomerleau 1992).

Nicotine in cigarettes and dipping tobacco users influence blood pressure and pulse rate variations and simulate sympathetic nervous system which can increase the risk of cardio vascular diseases and be considered a risk factor. More precise assessment of daily blood pressure variations using accurate invasive methods such as catheters or non invasive methods like holters monitoring is recommended.

Environmental tobacco smoke (ETS) has shown to be a high risk factor for cardio – vascular disease, but so far little is known about possible mechanism, this also needs to be studied.