LIST OF FIGURES

Figure 1.1. Upper left; Alexander Fleming (1881–1955) in his laboratory. Upper right; World War II poster. Lower left; Production of penicillin in bedpans during the first years of the World War II. Lower right; Production of penicillin at the end of the World War II.

Figure 1.2. Geographic location of Bastar in map of India.

Figure 2.1. Microscopic view of Gram positive staphylococci (1000 X).

Figure 2.2. Characteristics of S. aureus colonies. Upper: golden growth and discrete colonies on Mueller Hinton agar plate. Lower left: magnified view of some discrete colonies. Lower middle: magnified single colony showing circular margins and convexity. Lower right: intact hen’s egg yolk resembling the S. aureus colony. (Courtesy of Mohammad Fareed Khan, MATS University)

Figure 2.3. Various sites of S. aureus infections.

Figure 2.4. Cutaneous abscesses (A-D) and wound infections (E and F) caused by MRSA.

Figure 2.5. Virulence factors of Staphylococcus aureus. A: Surface and secreted proteins. B and C: Cross-sections of the cell envelope.

Figure 2.6. Structure of FDA approved antibiotics for S. aureus.
Figure 3.1. Media plates and tubes: (a) agar medium plate, (b) agar-deep tube, (c) agar slant, and (d) broth medium tube.

Figure 3.2. Various agar media plates used in research: (a) nutrient agar plate, (b) blood agar plate, (c) chocolate agar plate, (d) MacConkey agar plate, (e) mannitol salt agar plate, (f) C.L.E.D. agar plate, and (g) Müeller Hinton agar plate.

Figure 3.3. Streaking patterns of inoculation used in the research.

Figure 3.4. Microscopic view of Gram stained smears under oil-immersion objective (magnification = 1000X): (a) Gram positive staphylococci, and (b) Gram negative bacilli.

Figure 3.5. Microbiological strategy used in research to identify *S. aureus* isolates.

Figure 3.6. Slide catalase test: (a) catalase positive reaction (bubble formation), and (b) catalase negative reaction.

Figure 3.7. Coagulase test: (a) slide test (left negative and right positive), and (b) tube test (top positive and bottom negative).

Figure 3.8. Latex agglutination test, Dry Spot Staphytect Plus (Oxoid).

Figure 3.9. Culture on different media used in the research: (a) β-haemolytic growth of *S. aureus* on blood agar plate, (b) non-lactose fermenting (NLF) growth of *S. aureus* (right side), and lactose-fermenting (LF) growth (left side) on MacConkey agar plate, (c) growth of *S. aureus*
on C.L.E.D. agar plate, and (d) growth of *S. aureus* on mannitol salt agar (MSA) plate.

Figure 3.10. Antibiotic susceptibility testing: Kirby-Bauer disk diffusion method (left side), and Etest Method (right side).

Figure 4.1. Processing of clinical samples; (a) Pyramid showing the type and number of clinical samples (n = 3591) cultured, and (b) Pi chart showing the incidence of respective culture positive samples in the total number of culture positive samples (n = 2520).

Figure 4.2. Prevalence of *Staphylococcus aureus* and other organisms in the culture positive clinical samples.

Figure 4.3. Study population from which *Staphylococcus aureus* isolates were cultured: (a) Percent proportion of male and female study subjects (n = 916), (b) Percent proportion of age groups in male subjects (n = 573), and (c) Percent proportion of age groups in female subjects (n = 343).

Figure 4.4. Clinical samples satisfying the sample size of *Staphylococcus aureus* isolates: (a) Number and percentage of *Staphylococcus aureus* positive samples (n = 916), (b) Percent proportion of clinical samples of male subjects (n = 573), and (c) Percent proportion of clinical samples of female subjects (n = 343).

Figure 4.5. *Staphylococcus aureus* isolates from clinical samples of age groups of (a) male subjects, and (b) female subjects.

Figure 4.6. Prevalence of MRSA and MSSA: (a) In studied population (n
(b) In studied male subjects (n = 573), and (c) In studied female subjects (n = 343).

Figure 4.7. Prevalence of MRSA and MSSA: (a) In age groups of male subjects, and (b) In age groups of female subjects.

Figure 4.8. Prevalence of MRSA and MSSA in (a) total clinical samples studied, (b) pus samples, (c) urine samples, (d) blood samples, (e) wound samples, and (f) throat swab samples.

Figure 4.9. MRSA: (a) In clinical samples (n = 319), (b) In clinical samples of age groups of studied male subjects (n = 197), and (c) In clinical samples of studied female subjects (n = 122).

Figure 4.10. MRSA from clinical samples of age groups of (a) male subjects, and (b) female subjects.

Figure 4.11. MSSA: (a) In clinical samples (n = 597), (b) In clinical samples of studied male subjects (n = 376), and (c) In clinical samples of studied female subjects (n = 221).

Figure 4.12. MSSA from clinical samples of age groups of (a) male subjects, and (b) female subjects.

Figure 4.13. Antibiotic susceptibility of total *S. aureus* isolates studied.

Figure 4.14. Antibiotic susceptibility of total MRSA isolates studied.

Figure 4.15. Antibiotic susceptibility of total MSSA isolates studied.
Figure 4.16. Antibiotic susceptibility of MRSA isolated from pus samples (n = 215).

Figure 4.17. Antibiotic susceptibility of MSSA isolated from pus samples (n = 416).

Figure 4.18. Antibiotic susceptibility of MRSA isolated from urine samples (n = 57).

Figure 4.19. Antibiotic susceptibility of MSSA isolated from urine samples (n = 87).

Figure 4.20. Antibiotic susceptibility of MRSA isolated from blood samples (n = 18).

Figure 4.21. Antibiotic susceptibility of MSSA isolated from blood samples (n = 47).

Figure 4.22. Antibiotic susceptibility of MRSA isolated from wound samples (n = 29).

Figure 4.23. Antibiotic susceptibility of MSSA isolated from wound samples (n = 42).

Figure 4.24. Antibiotic susceptibility of MSSA isolated from throat swab samples (n = 5).

Figure 4.25. Antibiotic susceptibility of MRSA isolated from studied male subjects.
Figure 4.26. Antibiotic susceptibility of MRSA isolated from studied male subjects of up to 13 yrs age.

Figure 4.27. Antibiotic susceptibility of MRSA isolated from studied male subjects of 14–40 yrs age.

Figure 4.28. Antibiotic susceptibility of MRSA isolated from studied male subjects of >40 yrs age.

Figure 4.29. Antibiotic susceptibility of MRSA isolated from studied female subjects.

Figure 4.30. Antibiotic susceptibility of MRSA isolated from studied female subjects of up to 13 yrs age.

Figure 4.31. Antibiotic susceptibility of MRSA isolated from studied female subjects of 14–40 yrs age.

Figure 4.32. Antibiotic susceptibility of MRSA isolated from studied female subjects of >40 yrs age.

Figure 4.33. Antibiotic susceptibility of MSSA isolated from studied male subjects.

Figure 4.34. Antibiotic susceptibility of MSSA isolated from studied male subjects of up to 13 yrs age.

Figure 4.35. Antibiotic susceptibility of MSSA isolated from studied male subjects of 14–40 yrs age.
Figure 4.36. Antibiotic susceptibility of MSSA isolated from studied male subjects of >40 yrs age.

Figure 4.37. Antibiotic susceptibility of MSSA isolated from studied female subjects.

Figure 4.38. Antibiotic susceptibility of MSSA isolated from studied female subjects of up to 13 yrs age.

Figure 4.39. Antibiotic susceptibility of MSSA isolated from studied female subjects of 14-40 yrs age.

Figure 4.40. Antibiotic susceptibility of MSSA isolated from studied female subjects of >40 yrs age.