

NOMENCLATURE

\(1/n \)
Heterogeneity factor, dimensionless

\(a_R \)
Constant of Redlich-Peterson isotherm, l/mg

\(C_o \)
Initial concentration of adsorbate in solution, mg/l

\(C_e \)
Equilibrium liquid phase concentration, mg/l

\(h \)
Initial sorption rate, mg/g min

\(I \)
Constant that gives idea about the thickness of boundary layer, mg/g

\(k_f \)
Rate constant of pseudo-first-order adsorption model, min\(^{-1}\)

\(k_{id} \)
Intra-particle diffusion rate constant, mg/g min\(^{1/2}\)

\(k_s \)
Rate constant of pseudo-second-order adsorption model, g/mg min

\(K_F \)
Constant of Freundlich isotherm, \((mg/g)/(l/mg)1/n\)

\(K_L \)
Constant of Langmuir isotherm, l/mg

\(K_R \)
Constant of Redlich-Peterson isotherm, g/l

\(K_T \)
Constant of Temkin isotherm, l/mol

\(q_s \)
Constant of D-R isotherm

\(n \)
Number of data points

\(p \)
Number of parameters

\(q_e \)
Equilibrium solid phase concentration, mg/g

\(q_{e,calc} \)
Calculated value of solid phase concentration of adsorbate at equilibrium, mg/g

\(q_{e,exp} \)
Experimental value of solid phase concentration of adsorbate at equilibrium, mg/g

\(q_m \)
Maximum adsorption capacity of adsorbent, mg/g

\(q_t \)
Amount of adsorbate adsorbed by adsorbent at time t, mg/g

\(R \)
Universal gas constant, 8.314 J/K mol

\(t \)
Time, min

\(T \)
Absolute temperature, K
ΔG° Gibbs free energy of adsorption, KJ/mol

ΔH° enthalpy of adsorption, KJ/mol

ΔS° entropy of adsorption, KJ/mol K

m Adsorbent dose, g/l

λ_{max} Maximum absorbency value of visible wavelength

ABS^{at} average of absorbance value before the degradation process

ABS^{at} average of absorbance value after the degradation process

C_t concentration of dye at time t, mg/l

C_o initial concentration of dye at time t, mg/l

C_b concentration at 10% break through, mg/l

C_x concentration at exhaustion, mg/l

x bed depth, m

x_{min} minimum bed depth, m

N_0 adsorptive capacity of adsorbent, mg/m3

V linear flow velocity of feed to bed, m/hr

t_1 time at which no part of the bed is saturated, min

t_2 time at which the bed is almost saturated, min

t_B time at which breakthrough point occurs, min

t_E time required to each $C_t/C_0 = 0.90$ for bed, min

L_S distance at which the bed is almost saturated, cm

L_F distance at which bed is clean, cm

C_F feed solute concentration in the feed, cm

ABBREVIATIONS

BG Brilliant Green

CR Congo Red

SD Saw dust

C. I. Color index

DTA Differential thermal analysis

DTG Differential thermal gravimetry
FTIR Fourier transform infrared spectroscopy
TG Thermal gravimetry
TGA Thermo-gravimetric analysis
SEM Scanning electron micrograph
XRD X-ray diffraction spectra
SSE Sum of the squares of the errors
SAE Sum of the absolute errors
ARE Average relative error
HYBRID Hybrid fractional error functions
MPSD Marquardt’s percent standard deviation
MINAS Minimal National standards
LDLo Lowest lethal dose
LD_{50} Lethal dose at which 50 percent of animal were killed
MTZ Mass transfer zone