Fig. B.1 Effect of bed height with respect to time on the removal of BG by SD ($C_0=50$ mg/l, Flow rate=9 l/h, T=303 K)

Fig. B.2 Effect of bed height with respect to time on the removal of BG by SD ($C_0=50$ mg/l, Flow rate=11 l/h, T=303 K)
Fig. B.3 Effect of flow rate on the removal of BG by SD ($C_o=50$ mg/l, Bed Height= 15 cm, $T=303$ K)

Fig. B.4 Effect of flow rate on the removal of BG by SD ($C_o=50$ mg/l, Bed Height= 30 cm, $T=303$ K)
Fig. B.5 Effect of flow rate on the removal of BG by SD ($C_0=50$ mg/l, Bed Height= 45 cm, $T=303$ K)

Fig. B.6 Effect of bed height on the removal of CR by SD ($C_0=20$ mg/l, Flow rate=9 l/h, $T=303$ K)
Fig. B.7 Effect of bed height on the removal of CR by SD ($C_0=20$ mg/l, Flow rate =11 l/h, $T=303$ K)

Fig. B.8 Effect of flow rate on the removal of CR by SD ($C_0=20$ mg/l, Bed height=15 cm, $T=303$ K)
Fig. B.9 Effect of flow rate on the removal of CR by SD ($C_o=20$ mg/l, Bed height=30 cm, $T=303$ K)

Fig. B.10 Effect of flow rate on the removal of CR by SD ($C_o=20$ mg/l, Bed height=45 cm, $T=303$ K)
Fig. B.11 Bohart Adams model for removal of BG by SD, $C_o=50$ mg/l, 90% Breakthrough, $T=303K$

Fig. B.12 Bohart Adams model for removal of BG by SD, $C_o=50$ mg/l, 50% Breakthrough, $T=303K$
Fig. B.13 Bohart Adams model for removal of CR by SD, $C_0=20$ mg/l, 90\% Breakthrough, $T=303K$

Fig. B.14 Bohart Adams model for removal of CR by SD, $C_0=20$ mg/l, 50\% Breakthrough, $T=303K$