List of Tables

1.1 List of widely used publicly available face databases for different covariates. 14

2.1 A comparison of some representative approaches proposed for matching sketches with digital face images. 24

2.2 Experimental protocol for matching viewed sketches. 39

2.3 Rank-1 identification accuracy of sketch to digital face image matching algorithms for matching viewed sketches. Identification accuracies are computed with five times random cross validation and standard deviations are also reported. 39

2.4 Rank-1 identification accuracy of sketch to digital face image matching algorithms for matching forensic sketches. 46

2.5 Rank-50 identification accuracy for large scale forensic sketch matching as shown in Figures 2.16 & 2.17. 46

2.6 Distribution of 1169 human responses obtained from the study. 54

2.7 Distribution of user clicks between prominent facial regions. 54

3.1 A comparison of different approaches proposed for matching pre- and post-surgery images on the Plastic Surgery face database [8]. 61

3.2 Rank-1 identification accuracy of the proposed multi-objective evolutionary granular approach and comparison with existing approaches. Identification accuracies and standard deviations are computed with 10 times cross validation. 76

3.3 Rank-1 identification accuracy of face granules using SIFT and EUCLBP. 79

3.4 Rank-1 identification accuracy on different types of local and global plastic surgery procedures. 83

3.5 Pearson correlation coefficient between different granular levels on the plastic surgery face database. 83
3.6 Performance of different levels of granules and their combinations on the plastic surgery and the combined heterogeneous face database. 

4.1 Existing algorithms for cross-resolution face image matching. 

4.2 Experimental protocol on different databases for cross-resolution face matching. Training subjects in the source domain specifies the total number of subjects used for training different algorithms. * For ChokePoint database, training of source and target domain classifiers is performed using the CMU Multi-PIE [9] database. 

4.3 Illustrates the number of instances on which co-transfer learning is performed and how the weights within an ensemble shift to emphasize the contribution of the target domain classifier. 

4.4 Rank-1 identification accuracy of the proposed CTL algorithm and comparison with existing algorithms and commercial system on the CMU Multi-PIE database [9]. 

4.5 Rank-1 identification accuracy of the proposed CTL algorithm and comparison with existing algorithms and commercial system on the SCface database [10]. 

4.6 Rank-1 identification accuracy of the proposed CTL algorithm and comparison with existing algorithms and commercial system on the ChokePoint database [11]. 

4.7 Rank-1 identification accuracy of the proposed CTL algorithm and comparison with existing algorithms and commercial system on the MBGC v.2 video challenge database [7]. 

4.8 Results for matching real world examples against a large scale gallery of 6534 individuals. Values in the table represents the rank at which the correct identity is retrieved. NP represents the cases which are not processed by the COTS. 

5.1 Categorization of existing approaches of video based face recognition. 

5.2 Comparing the proposed algorithm with the benchmark test results and COTS on the YouTube faces database [6]. 

5.3 Comparing the proposed algorithm with COTS and MNF on the MBGC v2 [7] database for matching still face images with videos. 

5.4 Comparing the proposed algorithm with COTS and MNF on different protocols of the MBGC v2 video challenge database [7].