List of Tables

Table 1: Typical properties of TiO$_2$
Table 2: Titania aerogels and xerogels and various catalytic systems reported
Table 3: TiO$_2$ compositions for photocatalysis
Table 4: List of samples prepared for the study
Table 5: List of coating formulations used in the present research
Table 6: Total samples prepared for the study and their abbreviations
Table 7: Crystallite size (nm) and phase compositions of undoped and doped titania samples heat-treated at different temperatures
Table 8: BET specific surface area (SSA) and pore volume of undoped and doped TiO$_2$ powders calcined at different temperatures
Table 9: TPD results showing the amount of weak and strong Lewis acid sites
Table 10: Photoactivity evaluation results of different titania samples with respect to the decolourisation of methylene blue on exposure to UV light
Table 11: Photoactivity evaluation results of different titania samples with respect to the decolourisation of methylene blue on exposure to sunlight
Table 12: Available literature on lanthana and/or ceria doped titania systems and their comparison with the present results
Table 13: Specific surface area and pore volume of doped and undoped TiO$_2$ powders obtained using the Brunauer-Emmet-Teller N$_2$ adsorption technique
Table 14: Crystallite size (nm) of anatase titania before and after chemical leaching, calculated using the Scherrer equation

Table 15: Photoactivity evaluation results of co-doped and co-doped-leached samples with respect to the decolourisation of methylene blue under UV light irradiation

Table 16: Photoactivity evaluation results of co-doped and co-doped-leached samples with respect to the decolourisation of methylene blue on exposure to sunlight

Table 17: Major results evolved from the study

Table 18: RMS roughness values of different titania coatings

Table 19: Photoactivity results of the 400°C calcined titania films with respect to the decolourisation of methylene blue in presence of UV light as well as sunlight.

Table 20: BET specific surface area and crystallite size of TU and TLA10 samples calcined at 400°C

Table 21: AFM Thickness measurement results of spin coated TiO₂ coatings

List of Figures

Figure 1: Anatase and rutile unit cells and crystals
Figure 2: An overview of sol-gel process
Figure 3: Energy scheme of a semiconductor particle
Figure 4: Schematic representation of band gaps of anatase and rutile
Figure 5: Flow chart for the preparation of doped TiO₂ powder
Figure 6: Schematic representation of the dip-coating unit fabricated
Figure 7: Flow chart for the preparation of co-doped TiO₂ powder
Figure 8: Flow chart for the preparation of co-doped TiO₂ coating
Figure 9: Flow chart for the preparation of Al₂O₃-La₂O₃ co-doped TiO₂ powder and coating
Figure 10: Types of adsorption isotherms 75
Figure 11: Schematic Representation of TPD set up 80
Figure 12: Particle size distribution of different titania sols. (A) TU; (B) TS-5; (C) TL-1; (D) TC-1; (E) TLS and (F) TCS 86
Figure 13: FTIR spectra of TU samples calcined at different temperatures. (a) 80°C; (b) 300°C; (c) 500°C; (d) 700°C; (e) 800°C and (f) 900°C 89
Figure 14: FTIR spectra of TL-1 samples calcined at different temperatures. (a) 80°C; (b) 700°C and (c) 900°C 90
Figure 15: FTIR spectra of different concentrations of lanthana doped titania samples calcined at 700°C. (a) TL-0.1; (b) TL-0.2; (c) TL-1; (d) TL-2 and (e) TL-5 92
Figure 16: FTIR spectra of TC-1 samples calcined at different temperatures. (a) 80°C; (b) 700°C and (c) 900°C 92
Figure 17: FTIR spectra of undoped and doped titania samples calcined at 700°C. (a) TU; (b) TL-1; (c) TC-1; (d) TS-1 and (e) TS-5 93
Figure 18: DTA curves of undoped and different percentages of La$_2$O$_3$ as well as CeO$_2$ doped titania samples. (a) TU; (b) TL-1; (c) TL-2; (d) TL-5; (e) TC-1; (f) TC-2 and (g) TC-5 96
Figure 19: Thermogravimetric curves of undoped and different percentages of La$_2$O$_3$ as well as CeO$_2$ doped titania samples. (a) TU; (b) TL-1; (c) TL-5; (d) TC-1 and (e) TC-5 99
Figure 20: Thermogravimetric curves and their derivatives of (A) TU and (B) TC-1 100
Figure 21: Powder X-ray diffraction patterns of as gelled xerogels (80°C). (a) TU; (b) TC-1; (c) TL-1 and (d) TS-5 103
Figure 22: Powder X-ray diffraction patterns of TL-1 samples calcined at different temperatures. (a) 80°C; (b) 500°C; (c) 700°C; (d) 800°C and (e) 950°C

Figure 23: Powder X-ray diffraction patterns of TC-1 samples calcined at different temperatures. (a) 80°C; (b) 500°C; (c) 800°C and (d) 950°C

Figure 24: Anatase and rutile crystallite sizes as well as the % rutile content vs calcination temperature of (A) TU; (B) TL-1 and (C) TC-1

Figure 25: SSA of undoped and doped TiO$_2$ powders as a function of calcination temperature

Figure 26: Variation in specific surface area (SSA) for doped TiO$_2$ samples as a function of dopant concentration

Figure 27: Pore size distribution curves of (A) TU; (B) TL-1 and (C) TC-1 powders calcined at 300, 500 and 700°C

Figure 28: Adsorption isotherms of undoped and doped titania powders calcined at temperatures 300, 500 and 700°C

Figure 29: TEM images of (A) - undoped TiO$_2$ calcined at 500°C/3h. 5 nm crystallite size and 300 nm particle size, fine-crystalline and (B) - calcined at 800°C/3h. 50 nm crystallite size and 500 nm particle size, coarse-crystalline

Figure 30: HRTEM (A), TEM bright field image (B) and SAED pattern (C) of TL-1 powder calcined at 400°C for 3 h. Labelled circular portion is amorphous phase and arrow shows the pores

Figure 31: HRTEM (A), TEM bright field image (B) and SAED pattern (C) TL-5 specimen calcined at 400°C. Labelled circular portion is amorphous phase
Figure 32: TEM bright field images (A, B and D); EDS (C) and SAED pattern (D) of TL-1 specimens calcined at 800°C. [Arrow indicates the pore]

Figure 33: TEM bright field images (A, B and D); EDS (C) and SAED pattern (E) of TL-2 specimens calcined at 800°C. [Arrows indicate the pores]

Figure 34: TEM bright field images (A, B and D); EDS (C) and SAED pattern (D) of TC-1 specimens calcined at 800°C

Figure 35a: A - Optical absorbance spectra of TU calcined at 700°C showing the degradation of methylene blue. The spectra were recorded at regular intervals of UV light irradiation; and B – The degradation profile showing the absorbance maximum plotted against time of exposure

Figure 35b: A - Optical absorbance spectra of TL-1 calcined at 700°C showing the degradation of methylene blue. The spectra were recorded at regular intervals of UV light irradiation; and B – The degradation profile showing the absorbance maximum plotted against time of exposure

Figure 35c: A - Optical absorbance spectra of TC-1 calcined at 700°C showing the degradation of methylene blue. The spectra were recorded at regular intervals of UV light irradiation; and B – The degradation profile showing the absorbance maximum plotted against time of exposure

Figure 36: Adsorption isotherms of unleached and leached titania samples calcined at 700°C.

Figure 37: Pore size distribution curves of leached and unleached titania samples

Figure 38: Powder X-ray diffraction patterns of TLS samples calcined at different temperature (a) 80°C; (b) 500°C; (c) 800°C and (d) 1050°C
Figure 39: Powder X-ray diffraction patterns of TCS samples calcined at different temperatures. (a) 80°C; (b) 500°C; (c) 800°C and (d) 1050°C.

Figure 40: Powder X-ray diffraction patterns of 700°C calcined, co-doped and co-doped-leached TiO₂ samples. (a) TLS, 500°C; (b) TLSN, 500°C; (c) TLS, 700°C and (d) TLSN, 700°C.

Figure 41: FTIR spectra of unleached and leached titania samples calcined at 700°C. (a) TU; (b) TS-5; (c) TS-5N; (d) TLS and (e) TLSN.

Figure 42: TEM bright field images (A, B and D); EDS (C) and SAED (E) of TLS specimens calcined at 800°C.

Figure 43: TEM bright field images (A, B and D); EDS (C) and SAED (E) of TCS specimens calcined at 800°C.

Figure 44: TEM image of (A) TS-5N calcined at 700°C; (B) HRTEM image of TS-5N calcined at 700°C; (C) TEM image of TLSN calcined at 700°C and (D) HRTEM of TLSN calcined at 700°C (All leached samples).

Figure 45: TEM image of TLS calcined at 700°C (low magnification) showing the effect of leaching on the tailoring of regular mesoporous texture.

Figure 46: Methylene blue degradation profiles of TLS and TLSN samples against calcination temperature. (A) under UV light and (B) under sunlight.

Figure 47: Methylene blue (MB) decolourisation under UV light. (A) before exposure and (B) after exposure. Beakers contain titania-methylene blue suspensions. (a) aqueous MB solution (blank); (b) MB + TU, 900°C; (c) MB + TL-1, 700°C; (d) MB + TC-1, 600°C and (e) MB + alumina.
suspension. Samples were exposed for a period of 30 minutes

Figure 48: Degradation of stain (lipstick) under sunlight irradiation. (A) before irradiation and (B) after irradiation. (a) 1% TL-1, 700°C; (b) TC-1, 600°C and (c) alumina slurry. Samples were exposed for a period of 30 minutes

Figure 49: Optical absorption spectra of undoped and doped TiO₂ coatings

Figure 50: The tangent drawn by fitting with sigmoidal curve fit for band gap analysis

Figure 51: Optical transmission spectra of TiO₂ coatings showing the effect of addition of polymers on the absorption. Coatings have been made with withdrawal speeds such as (A) 1.8 cm/min and (B) 4.2 cm/min

Figure 52: Optical absorption spectra of TiO₂ coatings showing the effect of addition of PEG. (A) singly coated and (B) triply coated

Figure 53: Optical absorption spectra of TL-1 coatings prepared with different withdrawal speeds. The coatings are calcined at 80°C

Figure 54: Optical absorption spectra of TiO₂ coatings prepared with different withdrawal speeds. The coatings are calcined at 400°C

Figure 55: Optical absorption spectra of TiO₂ coatings prepared with different withdrawal speeds. The coatings are calcined at 400°C

Figure 56: Optical transmission spectra of co-doped TiO₂ coatings (TLS) prepared with different withdrawal speeds. The coatings are calcined at 400°C
Figure 57: Optical absorption spectra showing the effect of multilayer coatings (A) TL-1 and (A) TLS-PEG0.5 films calcined at 400°C

Figure 58: AFM topography (A and B) of TU coating (5μm x 5μm images)

Figure 59: AFM topography (A and B) of TL-1 coating (5μm x 5μm images)

Figure 60: AFM topography (A and B) of TLS coating (different magnifications)

Figure 61: AFM topography (A and B) of TLS coating after chemical leaching

Figure 62: AFM topography (A) and internal sensor images (B and C) of 2-times coated TLS film before chemical leaching

Figure 63: AFM topography (row above) and internal sensor images (row below) of 2-times coated TLS film after chemical leaching

Figure 64: Methylene blue decolourisation profiles of different titania films under UV light and sunlight. The samples are calcined at 400°C

Figure 65: Optical absorption spectra of unleached and leached TLS coatings. The samples are calcined at 400°C

Figure 66: X-ray diffraction patterns of (a) TU specimen calcined at 400°C with a heating rate of 1°C/min. and (b) TU specimen calcined at 700°C with a stepwise heating rate (RT to 200°C, 2°C/min; 200 to 500°C, 3°C/min and 500 to 700°C, 5°C/min)

Figure 67: Particle size distribution of (A) TL-1 and (B) TLA10 precursor sols

Figure 68: TG curve of TLA10 xerogel
Figure 69: BJH pore size distribution of (a) TL-1 and (b) TLA10 sample calcined at 400°C

Figure 70: UV-Visible transmittance spectra of (a) glass substrate and (b) TLA10 coated glass substrate

Figure 71: AFM topography of TL-1 (A and B) and TLA10 (C and D) coatings calcined at 400°C

Figure 72: AFM image of TLA10 coating on glass surface