CONTENTS

Declaration i
Certificate ii
Acknowledgements iii
Preface ix
Abbreviations xii
List of Tables and Figures xiv

Chapter 1. An Introduction to Nanomaterials, Sol-Gel Chemistry with Special Reference to Titania Based Systems and Catalytic / Photocatalytic / Functional Applications

1.1. An overview on Nanomaterials 1
1.2. Titanium Dioxide 3
1.3. Nanocrystalline Titanium Oxide 9
1.4. Sol-Gel Process In General 10
1.5. Effect of solvents, catalysts and complexing ligands 18
1.6. Effect of Temperature 22
1.7. Anatase - Rutile Transformation 23
1.8. TiO₂ Films and Coatings 30
1.9. TiO₂ Nano Catalysts 32
1.10. Effect of Dopants 33
1.11. Effect of Additives 36
1.12. TiO₂ Photocatalysts 42
1.13. High Temperature Catalysts 50
1.14. Definition of The Research Problem 53
Chapter 2. Experimental and Characterization Techniques

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>Chemicals Used</td>
<td>56</td>
</tr>
<tr>
<td>2.2.</td>
<td>Experimental Methods</td>
<td>57</td>
</tr>
<tr>
<td>2.2.1.</td>
<td>Synthesis of Nanocrystalline Titania</td>
<td>57</td>
</tr>
<tr>
<td>2.2.1.1</td>
<td>Synthesis of Undoped TiO₂ Sol</td>
<td>57</td>
</tr>
<tr>
<td>2.2.1.2</td>
<td>Synthesis of La₂O₃-doped TiO₂ Sol</td>
<td>58</td>
</tr>
<tr>
<td>2.2.1.3</td>
<td>Synthesis of CeO₂-doped TiO₂ Sol</td>
<td>58</td>
</tr>
<tr>
<td>2.2.1.4</td>
<td>Synthesis of SiO₂ Sol</td>
<td>58</td>
</tr>
<tr>
<td>2.2.1.5</td>
<td>Synthesis of SiO₂-La₂O₃/CeO₂ co-doped TiO₂ Sol</td>
<td>60</td>
</tr>
<tr>
<td>2.2.1.6</td>
<td>Synthesis of Al₂O₃ Sol / Suspension</td>
<td>60</td>
</tr>
<tr>
<td>2.2.1.7</td>
<td>Synthesis of Al₂O₃-La₂O₃ Co-doped TiO₂ sol</td>
<td>60</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Leaching Process</td>
<td>61</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Fabrication of Nano Titania Coatings by Dip Coating</td>
<td>62</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Fabrication of Nano Titania Coatings by Spin-Coating</td>
<td>65</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Photoactivity Evaluation</td>
<td>66</td>
</tr>
<tr>
<td>2.3.</td>
<td>Characterization Techniques</td>
<td>72</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Particle Size Analysis</td>
<td>72</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Fourier Transform Infrared Spectroscopy (FTIR)</td>
<td>72</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Thermogravimetry</td>
<td>72</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Differential Thermal Analysis (DTA)</td>
<td>73</td>
</tr>
<tr>
<td>2.3.5</td>
<td>X-ray Diffraction (XRD)</td>
<td>73</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Nitrogen Sorption Studies (BET Specific Surface Area Analysis)</td>
<td>74</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Temperature Programmed Desorption of Ammonia (TPD)</td>
<td>79</td>
</tr>
</tbody>
</table>
2.3.8. Transmission Electron Microscopy (TEM) 80
2.3.9. UV-Vis Absorption/Transmission Spectroscopy 82
2.3.10. Atomic Force Microscopy (AFM) 82

Chapter 3. Nanocrystalline Catalytic Titania Powders

Abstract 83

3.1. Results 85

3.1.1. Particle Size Analysis 85
3.1.2. FTIR Spectral Analysis 87
3.1.3. Thermal Analysis 94
3.1.4. Powder X-ray Diffraction 101
3.1.5. BET Specific Surface Area Analysis 109
3.1.6. Transmission Electron Microscopy (TEM) 119
3.1.7. Temperature Programmed Desorption (TPD) 129
3.1.8. Photoactivity Evaluation 131

3.2. Discussion 134
3.3. High Surface Area Titania Through Co-doping-Leaching Process 151
3.3.1. Photoactivity Evaluation 168
3.4. Discussion 171
3.5. Conclusion 176

Chapter 4. Sol-Gel Nanocrystalline Titania Functional Coatings

Abstract 178

4.1. Introduction 178
4.2. Studies on Titania Coatings Fabricated By Dip Coating 184

4.2.1. Optical Studies of Undoped and Doped Titania Coatings 184

4.2.1.1. Effect of Dopants 185

4.2.1.2. Band Gap Analysis 186

4.2.1.3. Effect of Poly(ethylene glycol) 188

4.2.1.4. Effect of Withdrawal Speed 189

4.2.1.5. Effect of Multi-layer Coatings 192

4.2.2. Morphological Studies 194

4.2.2.1. AFM Topography 194

4.2.2.2. RMS Roughness Measurements 198

4.2.2.3. Effect of Chemical Leaching 201

4.2.3. Photoactivity Evaluation 205

4.3. Studies on Titania Coatings Fabricated By Spin Coating 210

4.3.1. TiO₂ Xerogel Characteristics 210

4.3.2. TiO₂ Coating Characteristics 213

4.3.2.1. Morphological Studies Using Atomic Force Microscope (AFM) 214

4.3.2.2. Thickness Measurement Using Atomic Force Microscope (AFM) 215

4.4. Discussion 219

4.5. Conclusion 221

Chapter 5. Conclusion 223

References 228

List of Publications 260