1. INTRODUCTION

1.1 Objectives Of The Present Study

2. LITERATURE REVIEW

2.1 Type 1 Diabetes or IDDM

2.1.1 Experimentally Induced Models

2.2 Type II Diabetes or NIDDM

2.3 Factors Affecting Insulin Regulation From Pancreatic β-Cells

2.3.1 Glucose
2.3.2 Fatty Acids
2.3.3 Amino Acids
2.3.4 Substrates Derived From Nutrients
2.3.5 Glucagon
2.3.6 Somatostatin
2.3.7 Pancreastatin
2.3.8 Amylin
2.3.9 Adrenomedullin
2.3.10 Galanin
2.3.11 Macrophage Migration Inhibitory Factor (MIF)
2.3.12 Other Agents

2.4 Role Of Neurotransmitters In Insulin Regulation

2.4.1 Acetylcholine
2.4.2 Dopamine
2.4.3 γ-Aminobutyric Acid
2.4.4 Serotonin
2.4.5 Epinephrine And Norepinephrine

2.5 Brain Neurotransmitter Changes During Diabetes

2.6 Adrenergic Receptors

2.6.1 α-Adrenergic Receptors
2.6.1.1 α1 Adrenergic Receptors
2.6.1.2. α2 Adrenergic Receptors
2.6.2 β-Adrenergic Receptors

2.7 Adrenergic Receptors In Diabetes

2.8 Pancreatic β-Cell Mass And Diabetes

2.9 Pancreatic Regeneration

2.10 Differentiation Of The Pancreatic β-Cell

2.11 Mechanism Of Pancreatic β-Cell Growth

2.12 Factors Regulating Pancreatic β-Cell Growth

2.12.1 Glucose
2.12.2 Insulin
2.12.3 Role Of Growth Factors
2.12.4 Amino Acids And Polyamines
2.12.5 Regulatory Proteins
2.12.6 Inhibitors Of Pancreatic Beta Cell Proliferation

2.13 Models Of Pancreatic β-Cell Proliferation In Diabetes

2.14 Neurotransmitters As Growth Signals

2.14.1 Norepinephrine
2.14.2 Adrenergic Receptors And Regeneration
2.15 Effect Of Aging On The Regenerative Capacity Of The Pancreatic β-Cells 33
2.16 Molecular Biology Of Pancreatic β-Cell 34
2.17 Perspective 35

3 MATERIALS AND METHODS 38
3.1 Biochemicals And Their Sources 38
 3.1.1 Chemicals Used For The Study 38
 3.1.1.1 Biochemicals: (Sigma Chemical Co., USA.) 38
 3.1.1.2 Radiochemicals 38
 3.1.1.3 Molecular Biology Chemicals 39
3.2 Animals 39
3.3 Partial Pancreatectomy 39
 3.3.1 Tissue Preparation 40
 3.3.2 Estimation Of Blood Glucose 40
 3.3.3 Estimation Of Circulating Insulin By Radioimmunoassay 40
 3.3.3.1 Principle Of The Assay 40
 3.3.3.2 Assay Protocol 41
 3.3.4 Estimation Of Circulating Tri-Iodothyronine By Radioimmunoassay 41
3.4 Isolation Of Pancreatic Islets 42
3.5 In Vivo DNA Synthesis Studies In The Pancreas 42
3.6 Quantification Of Brain And Pancreatic Islet Monoamines And Their Metabolites 43
3.7 Quantification Of Circulating Catecholamine 44
3.8 Protein Determination 44
3.9 Adrenergic Receptor Binding Studies Using Tritiated Radioligands 44
 3.9.1 Binding Studies In The Brain Regions 44
 3.9.1.1 [3H]Epinephrine Binding 44
 3.9.1.2 [3H]Prazosin Binding 45
 3.9.1.3 [3H]Yohimbine Binding 45
 3.9.1.4 [3H]Propranolol Binding 46
 3.9.2 Binding Studies In The Pancreatic Islets 47
 3.9.2.1 [3H]Epinephrine Binding 47
 3.9.2.2 [3H]Prazosin Binding 47
 3.9.2.3 [3H]Yohimbine Binding 48
 3.9.2.4 [3H]Propranolol Binding 48
3.10 Analysis Of The Receptor Binding Data 49
 3.10.1 Linear Regression Analysis For Scatchard Plots 49
 3.10.2 Nonlinear Regression Analysis For Displacement Curve 49
3.11 In Vitro DNA Synthesis Studies In The Pancreas 49
3.12 [3H]EPI Uptake Studies By Pancreatic Islets In Vitro 50
3.13 In Vitro Insulin Secretion In The Presence Of Different Concentrations Of EPI 51
 3.13.1 24 hrs Incubation Study 51
 3.13.2 One Hour Incubation Study 51
3.14 Pancreatic Islet Nuclear EPI Binding Protein Studies 51
3.15 Determination Of Molecular Weight Of Pancreatic Islet Nuclear EPI Binding Protein By Ligand Blotting Technique 52
3.16 SDS-PAGE 52
3.17 Protein Blotting To PVDF Membrane And Molecular Weight Determination 52
3.18 Amino Acid Analysis Of Pancreatic Islet Nuclear EPI Binding Protein

3.18.1 Amino Acid Analysis

3.19 Expression Studies Of Adrenergic Receptor In Different Brain Regions

3.19.1 Isolation Of RNA

3.19.2 RT-PCR (Reverse Transcription Polymerase Chain Reaction)

3.19.3 RT-PCR Primers

3.19.4 RT-PCR Of α_2A And β-Adrenergic Receptors

3.19.5 Thermocycling Profile For RT-PCR

3.19.6 Analysis Of RT-PCR Product

3.20 Statistics

4 RESULTS

4.1 Body Weight And Blood Glucose Level

4.2 DNA Synthesis In Regenerating Pancreas

4.3 Circulating Insulin Level

4.4 Circulating T_3 Level

4.5 Brain Epinephrine And Norepinephrine Content Of Rats

4.6 Epinephrine And Norepinephrine Content In The Pancreatic Islets Of Rats

4.7 Circulating EPI And NE Levels Of Experimental Rats

4.8 Changes In The Brain Adrenergic Receptors During Pancreatic Regeneration

4.8.1 Cerebral Cortex

4.8.2 Brain Stem

4.8.3 Hypothalamus

4.9 α_1 Adrenergic Receptors

4.9.1 Cerebral Cortex

4.9.2 Brain Stem

4.9.3 Hypothalamus

4.10 α_2 Adrenergic Receptors

4.10.1 Cerebral Cortex

4.10.2 Brain Stem

4.10.3 Hypothalamus

4.10.4 RT-PCR Studies Of α_2A Adrenergic Receptor In The Brain Regions

4.11 β-Adrenergic Receptors

4.11.1 Cerebral Cortex

4.11.2 Brain Stem

4.11.3 Hypothalamus

4.11.4 RT-PCR Studies Of β-Adrenergic Receptor In The Brain Regions

4.12 Changes In The Pancreatic Adrenergic Receptors During Pancreatic Regeneration

4.12.1 α_1-Adrenergic Receptors

4.12.2 α_2-Adrenergic Receptors

4.12.3 β-Adrenergic Receptors

4.13 In Vitro Studies

4.13.1 Effect Of EPI And Glucose On Insulin Secretion In Vitro

4.13.2 Effect Of Different Adrenergic Receptor Antagonists On Insulin Secretion In Vitro

4.13.3 Effect Of EPI And Glucose On Insulin Secretion In 24 Hrs Islet Cultures
4.13.4 Effect Of Adrenergic Receptor Antagonists On Insulin Secretion In 24 Hrs Islet Cultures

4.14 [3H]EPI Uptake And Binding To Whole Cell And Subcellular Fractions Of Pancreatic Islets At Different Time Intervals

4.14.1 [3H]EPI Uptake Into Whole Cell

4.14.2 [3H]EPI In Different Fractions Of Pancreatic Islets

4.15 Scatchard Analysis Of EPI -Binding Novel Nuclear Protein In The Pancreatic Islets Of Pancreatectomised Rats

4.16 Scatchard Analysis Of EPI -Binding Nuclear Protein In The Pancreatic Islets Of Diabetic Rats

4.17 Molecular Weight Determination Of Nuclear EPI -Binding Protein

4.18 Amino Acid Composition Of 70-kDa EPI -Binding Protein

4.19 70-kDa EPI -Binding Protein Showed Maximum Homology To The Mouse Zinc Finger Protein

4.20 In Vitro DNA Synthesis Studies In Pancreatic Islets

4.20.1 Effect Of Glucose On DNA Synthesis In The Pancreatic Islets

4.20.2 Effect Of EGF And TGF On Glucose-Induced DNA Synthesis In The Pancreatic Islets In Vitro

4.20.3 Effect Of Epinephrine On DNA Synthesis In Pancreatic Islets In Vitro

4.20.4 Dose Dependant Effect Of Epinephrine On DNA Synthesis In Pancreatic Islets In Vitro

4.20.5 Effect Of Different Adrenergic Receptor Antagonists On Islet DNA Synthesis In Vitro

5. DISCUSSION

5.1 Epinephrine And Norepinephrine Content Is Decreased In The Brain Regions, Pancreatic Islets And Plasma During Pancreatic Regeneration.

5.2 Brain Adrenergic Receptors Are Altered During Pancreatic Regeneration In Rats.

5.3 α1-Adrenergic Receptors Are Down Regulated During Active Islet Cell Proliferation

5.4 α2-Adrenergic Receptor Activity Is Decreased In The Brain Regions During Islet Regeneration

5.5 Brain β-Adrenergic Receptors Are Up Regulated At The Time Of Active DNA Synthesis In The Pancreatic Islets

5.6 Pancreatic Adrenergic Receptors Are Decreased During Active Islet Cell Proliferation

5.7 α1-Adrenergic Receptors In The Islets Are Down Regulated During Regeneration

5.8 Islet α2-Adrenergic Receptors Are Down Regulated During Pancreatic Regeneration

5.9 β-Adrenergic Receptors In The Islets Are Up Regulated During Regeneration

5.10 Adrenergic Receptor Antagonists Regulate Insulin Secretion In Ihr Incubation And Long Term Culture Of Islet Cells

5.11 EPI Is Taken Up By The Islet Cells And Binds To Different Subcellular Fractions Of Islets

5.12 The EPI -Binding Nuclear Protein In The Islets Is Identified As A 70-kDa Histidine-Rich Protein

5.13 EPI -Binding Nuclear Proteins Are Increased In The Islets Of
5.14 EPI Binding Nuclear Proteins Are Down Regulated In The Pancreatic Islets Of STZ-Diabetic Rats

5.15 Possible Regulation Of Insulin Transcription By The 70-kDa Protein

5.16 Glucose And Growth Factors Regulate The Islet Cell Proliferation In Vitro

5.17 EPI Controls Islet Cell Proliferation In A Concentration Dependent Manner

5.18 α-Adrenergic Receptors Inhibit And β- Adrenergic Receptors Stimulate The DNA Synthesis In Islet Cells

6. SUMMARY

7. CONCLUSION

8. REFERENCES