INDEX

1. ABBREVIATIONS

2. ABSTRACT OF THE THESIS

3. INTRODUCTION AND REVIEW OF LITERATURE.
 3.1 Osteopontin (OPN)
 3.2 Nomenclature and General Characteristics of OPN
 3.3 Tissue Distribution of OPN
 3.4 Structural Features of OPN
 3.5 OPN: a Key Regulator in Cancer Progression and Tumor Angiogenesis
 3.5.1 Integrins and CD44: Receptors for OPN in Cancer Progression
 3.5.2 Role of OPN in Cancer Progression
 3.5.2.1 OPN Controls the Metastatic Potential of Melanoma Progression
 3.5.2.2 OPN: a Hallmark for Breast Cancer
 3.5.2.3 Prognostic and Diagnostic Significance of OPN for Prostate Cancer Progression
 3.5.2.4 OPN in Other Cancers
 3.5.3 Angiogenesis
 3.5.3.1 Angiogenic Factors
 3.5.3.2 OPN: a Key Angiogenic Factor for Cancer Progression
 3.6 Cyclooxygenase-2 (COX-2)
 3.7 Prostaglandin E₂ (PGE₂)
 3.8 Prostaglandin Receptors
 3.9 Role of COX-2/PGE₂ in Cancer
 3.10 Role of COX-2 and PGE₂ in Angiogenesis
 3.11 NSAIDs; the COX-2 inhibitors
 3.12 Epidermal Growth Factor Receptor (EGFR)
 3.13 Integrin β3
 3.14 Protein Kinase C α (PKCα)
 3.15 c-Src
 3.16 Nuclear Factor-κB (NF-κB)
 3.17 Activating Transcription Factor-4 (ATF-4)
3.18 Urokinase Plasminogen Activator (uPA) 27
3.19 Vascular Endothelial Growth Factor (VEGF) 27

4. AIMS AND OBJECTIVE OF THE STUDY 29

5. MATERIALS AND METHODS 31
5.1 Sources of Chemicals and cDNA 31
5.2 Maintenance of Cell Lines 31
5.3 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Blot Analysis 34
5.4 Immunoprecipitation 37
5.5 RNA Extraction and Reverse Transcription (RT)-PCR 38
5.6 Transfection 38
5.7 Luciferase Assay 38
5.8 In vitro Kinase Assay 39
5.9 Gelatin Zymography 39
5.10 Preparation of Nuclear and Cytoplasmic Extracts 40
5.11 Electrophoretic Mobility Shift Assay (EMSA) 41
5.12 Estimation of PGE_2 43
5.13 Small Interfering RNA (siRNA) 43
5.14 Flow Cytometry 43
5.15 Wound Migration Assay 43
5.16 Cell Migration, Co-migration and Invasion Assays 43
5.17 Immunofluorescence 44
5.18 In Vivo Matrigel Based Angiogenesis Assay 45
5.19 In Vivo Tumorigenesis Experiments 45
5.20 Immunohistochemical Study 45
5.21 Human Prostate Clinical Sample Analysis 46
5.22 Statistical Analysis 46

6. RESULTS AND DISCUSSION 47
6.1 Osteopontin Regulates Cyclooxygenase-2 (COX-2)/Prostaglandin E_2 (PGE_2)-mediated Prostate Cancer Progression and Angiogenesis: Role of Protein Kinase Ca/c-Src/ IκB Kinase α/β dependent Signaling Cascade 47
6.1.1 Introduction 47
6.1.2 Results 48
6.1.2.1 Regulation of COX-2 Expression in Response to OPN 48
6.1.2.2 OPN Regulates NIK-IKK-NF-κB-dependent COX-2 Promoter Activity 50
6.1.2.3 OPN Regulates PKCα Activation and its Interaction with c-Src 51
6.1.2.4 NIK Plays Differential Role in OPN-induced IKKα/β Phosphorylation 51
6.1.2.5 OPN Stimulates PKCα-c-Src-mediated p65 Phosphorylation 52
6.1.2.6 PKCα, c-Src and COX-2 Regulates PGE2 Production and MMP-2 Activation in Response to OPN 54
6.1.2.7 COX-2 and PGE2 Regulate OPN-induced PC-3 Cell Migration and Invasion 54
6.1.2.8 OPN-induced Tumor Cell-Derived PGE2 Enhances Endothelial Cell Motility and Invasion through Paracrine Mechanism 56
6.1.2.9 COX-2 and PGE2 regulates OPN-induced tumor growth 58
6.1.2.10 Expression profile of OPN, COX-2, MMP-2 and NF-κB, p65 localization in different pathological grades of prostate cancer and their correlation with cancer progression and angiogenesis 60

6.1.3 Discussion 62

6.2 Prostaglandin E2 regulates EP2/EP4 receptor-dependent EGFR and β3 Integrin mediated Prostate Tumor Cell Motility and Angiogenesis 65
6.2.1 Introduction 65
6.2.2 Results 66
 6.2.2.1 PGE2 Augments EP2/EP4 Receptor-mediated EGFR and β3 Integrin Activation in Prostate Cancer Cells 66
 6.2.2.2 EGFR and β3 Integrin Play Crucial Role in PGE2-induced AP-1 Activation 68
 6.2.2.3 PGE2 Stimulates ATF-4 dependent AP-1 70
 6.2.2.4 PGE2 Induces EP2/EP4 Receptor-mediated uPA and VEGF Expression in Prostate Cancer Cells 72
 6.2.2.5 ATF-4 and AP-1 Regulate PGE2-induced Prostate Tumor Cell Motility 74
 6.2.2.6 PGE2 Induces EP2/EP4 Receptor-mediated Tumor-Endothelial Cell Interaction and Angiogenesis 75
6.2.2.7 Expression Profiles of EP2, EP4, ATF-4, c-Jun, c-Fos, uPA and VEGF and their Correlation with Tumor Progression in Various Grades of Prostate Cancer Specimens

6.2.3 Discussion

7. SUMMARY AND CONCLUSION

8. BIBLIOGRAPHY

9. APPENDIX
 9.1 List of Publications
 9.2 Conference Presentations