List of Tables

1.1 Index computation for Haar basis functions..42
1.2 Comparison of algorithmic complexity of
 the proposed method with FFT and WT..47
2.1 Haar values of \((U)\) and observed \((U_0)\)
 soil temperature \((0°C)\) at depths...60
2.2 Haar values of \((U)\) and observed \((U_0)\)
 soil temperature \((0°C)\) at depths...61
3.1 Comparison of the analytical and Haar solutions
 of Fisher’s equation at \(t = 0.25\)...79
3.2 Comparison of the analytical and Haar solutions
 of Fisher’s equation at \(t = 0.48\)...79
4.1 Comparison of the analytical and Haar solutions of
 FitzHugh-Nagumo equation at \(t = 0.48\)...96
4.2 Comparison of the analytical and Haar solutions of
 Cahn-Allen equation at \(t = 0.85\)...96
5.1 Errors between the exact, Haar and the numerical
 solutions with \(\alpha = 0.1\) and \(\beta = 1\)...115
5.2 Error estimation of Convection-Diffusion equation
 for various values of spatial variable \(x\) and time \(t\)......................................115
5.3 Error estimation of Convection-Diffusion equation for various values of spatial variable x and time t...116

5.4 Comparison of the exact solution and the Haar solution of Convection-Diffusion equation for $t = 0.85$...116

5.5 Comparison of the exact solution and the Haar solution of Convection-Diffusion equation for $t = 0.25$...117

5.6 Comparison of the exact solution and the Haar solution of Convection-Diffusion equation for $t = 0.48$...117

7.1 The absolute errors at different times and space locations for example.1...158

8.1 Comparison between numerical and Haar solutions of substrate $s(x, t)$ for $k = 0.01, \alpha = 0.001, t = 1, m = 16$ and $m = 32$170

8.2 Comparison between numerical and Haar solutions of substrate $s(x, t)$ for $k = 0.01, \alpha = 1.0, t = 3, m = 16$ and $m = 32$170

9.1 Comparison of the exact solution and the Haar solution of Burgers' equation with $v = 1, \Delta t = 0.000001, h = 0.0125$ and $m = 16$..185

9.2 Comparison of results at different positions and times for $v = 1, \Delta x = 0.0125(N = 80), \Delta t = 1.0E−05$ and $m = 16$...185

9.3 Comparison of results at different positions and times for $v = 1, \Delta x = 0.0125(N = 80), \Delta t = 1.0E−05$ and $m = 16$...187

9.4 Comparison of the exact solution and the Haar solution of Burgers' equation for $t = 0.85$..187

9.5 Some comparison results of the Haar solution...189

10.1 Values of Inductance (I) and Capacitance (C)...198