CHAPTER 10

CONCLUSIONS

10.1 SUMMARY

The successful implementation of KM solution solely depends on three pillars viz. people, process and technology of organization. There are various elements influence the people, process and technology of KM implementation solution namely readiness, behavior, taxonomy, technology, structure, environment, reward, learning, communication, internal and external levels and functions of organization. This study was undertaken to address and develop the designs and models required for the above critical elements for the implementation of KM solution. A temporal confirmation conceptual model was designed based on the macro level brainstorming study and six modules are identified for the micro level study. Integrated approach of Empirical and expert opinion study was conducted for each module to devise and generate a generic design and process blueprint of identification of readiness level of people, process and technology for KM solution implementation, behavior assessment of people for the change, current and future taxonomy and technology landscape required for KM solution, process and environment design along with learning, reward and communication design for the KM solution implementation and linkage design for internal and external levels and functions of organization namely balanced scorecard and vendor managed inventory. Designs and models developed in this research have important theoretical contributions to the KM literature. In addition to this theoretical
contribution, this research also provides important contributions for KM managers and practitioners and all the designs and models can be leveraged as a base for any manufacturing organization, which is willing to implement KM solution. The devised models can be adjusted to suit to the needs of the specific goals and objectives of KM solution of manufacturing organization.

The primary intention of readiness assessment is to assess the exact status of where the organization stands today with respect to key critical success dimensions of three pillars of KM namely process, people and technology. The objective of this module is to design a generic conceptual framework and generic solution procedure for readiness assessment for any manufacturing organization with a set of standard components and sub-components. The components and sub-components are derived from the literature and those can be changed with respect to mission and vision of the organization. Readiness assessment was carried out for the case organization with 85 executives and it is suggested that the organization needs to improve the readiness in the areas such as tacit knowledge sharing, explicit knowledge sharing, knowledge centers establishment and right measures for KM solution.

The primary intention of behavior assessment is to assess the exact behavior pattern among the people in the organization towards the implementation of KM solution. The objective of this module is to design a generic conceptual framework and generic solution procedure for behavior assessment for any manufacturing organization with a set of behavior types and targets. The types and targets are derived from the literature and those can be changed with respect to mission and vision of the organization. Behavior assessment was carried out for the case organization and it is suggested that there are six behavior types in the organization namely Skeptic (10%), convert (23%), cynic (14%), procrastinator (16%), potential (21%) and rebel (16%)
and the targets for certain behavior types needs to be reviewed and revised for the improvement towards the acceptance for KM solution implementation.

The primary intention of designing taxonomy and technology architecture is to identify the current and future KM components in navigation and content layers and to access the suitability of technology landscape towards the implementation of KM solution. The objective of this module is to design a generic conceptual framework and generic solution procedure for devising taxonomy and technology architecture for any manufacturing organization with a set of KM components and IT integration landscape. The KM components are derived from the literature and those can be changed with respect to mission and vision of the organization. Taxonomy and technology architecture was designed for case organization with 1 navigation layer, 20 content layers and 167 KM components for structured knowledge. Macro level technology architecture was suggested.

The primary intention of process and environment design is to devise the process design for knowledge capture, storage, retrieval, administration, key performance indicator and organization structure for the implementation of KM solution. Process design and organization structure was designed for the case organization.

The primary intention of learning, reward and communication design is to devise and design the learning factors, incentive plan and metrics and communication plan for the implementation of KM solution. This module was also designed for the case organization.

The primary intention of linkage plan for internal and external functions of organization is to provide a platform to link the KM goals to the overall goals of the organization and also to link to external entity of the
organization. We have considered one internal function which is the balanced scorecard and one external function which is the vendor managed inventory. Balanced Scorecard is strategic planning tool which can align the organization to the vision of success, and get people working on the right things and focusing on results. Development of balanced scorecard system is like putting a puzzle together, where different pieces come together to form a complete mosaic. We developed a conceptual framework and model for the implementation of balanced scorecard with the focus on customer relationship based strategic planning, which is a part of KM solution implementation. The conceptual framework for a case company was successfully implemented with the focus on architecture for balanced scorecard. Vendor Managed Inventory (VMI) is one such supply chain external function where the vendor is given the sole responsibility to monitor and manage the inventory of the retailer. This research attempts to analyze this supply chain external function and illustrate the key knowledge elements of this system and the role it plays in the overall supply chain. The benefits and risks of the VMI system are also analyzed. The design and implementation steps for VMI are extensively reviewed. A case study with a view of KM solution implementation is discussed. The analysis of industries which would benefit from implementing this system is also conducted.

10.2 SCOPE FOR FURTHER WORK

The future scope of research include exploration of design and models for the application of service industry and investigation of other modules such as top management influence design, risk design, training design and model and sustenance design for implementation of KM solution. It is not clear what kind of organizations will survive in future environment or what types of learning will be central. The increasingly dynamic internal and external environment of organizations results from the growing intensity of
knowledge generation in and around organizations. So, the future research for exploration of impact of external components for the implementation of KM is critical. The detailed research on KM functions is also important. KM is a term that received some negative press because many organizations spent significant amounts of funding on them in the 1990s and they didn’t quite work as expected. The future research on understanding the threats for KM implementation is critical. This research does not address microblogs as KM Systems but the connection is important to point out for potential further research and microblog development. At the intersection of user and system level, most research tends to investigate motivations of users. There is a lack of research on usability of KM system and limited studies on usage of KM system. Both usability and usage studies if well designed can provide a good indicator of user acceptance of KMS. There appears to be a relative paucity of KM evaluation studies at the group and team levels except for a few virtual team studies. Although there have been studies at the project level which could be interpreted as group level evaluations, these studies did not investigate group characteristics and team dynamics in relation to evaluation of KM. This area presents an opportunity for future research on team effectiveness in terms of KM. There appears to be a lack of studies focusing purposefully on evaluation of KM strategy and KM structure. Considering that both elements can be vital to the success of KM initiatives, research on these elements is required. Aggregation from user and system level evaluation to team, project, and business unit level evaluation and subsequently to organization level KM evaluation could provide a worthwhile avenue for future research.