<table>
<thead>
<tr>
<th>Chapter V:</th>
<th>Conclusions and Suggestions</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td></td>
<td>171</td>
</tr>
<tr>
<td>5.2 Conclusions</td>
<td></td>
<td>172</td>
</tr>
<tr>
<td>5.3 Suggestions</td>
<td></td>
<td>173</td>
</tr>
<tr>
<td>5.4 Limitations of the study</td>
<td></td>
<td>185</td>
</tr>
<tr>
<td>5.5 Areas for further research</td>
<td></td>
<td>194</td>
</tr>
</tbody>
</table>
Chapter V: Conclusions and Suggestions

5.1 Introduction

The revolution in various streams of science and technology has provided a very powerful and continuous thrust to the growth of Information Technology during twentieth century. Though first started with the scientific applications, Information Technology was soon found to be the boon for business operations; and it was identified as a motivator to the growth of global business. The large scale and multinational business were quick enough to realise Information Technology’s importance of Information Technology, to adopt it in their organisation for better productivity and profitability, and to fund it for further development of Information Technology.

It has been accepted world over that the Small and Medium Enterprises (SMEs) are larger than these large scale organisations when put together. They also provide a solid cost-effective back-bone for the large scale organisations. In fact, international organisations like UNCTAD/WTO recognise that by integrating information management into business operations, SMEs can raise their competitiveness (in the international market). However, evidence reviewed earlier from different parts of the world including India, over a decade, points out that the SMEs mainly in developing and transition economies are largely unaware of the potential contribution that the use of new Information Technology would make to improving their business performance.

Hence, the purpose of this project was to identify the critical factors that prevented SMEs to make optimum use of Information Technology in their businesses. This chapter draws conclusions from the research conducted,
data collected and analysed which was presented in Chapter – IV – Data Analysis and findings.

The conclusions and suggestions are grouped into following sections:

a. Conclusions of the research project
 i. Profile of the respondents and their units
 ii. Analysis of Information Technology environment in the respondents’ units
 iii. Impact of Information Technology on business processes
 iv. Conclusions drawn from analysis of hypotheses

b. Limitations of project

c. Suggestions

d. Scope for further research

5.2 Conclusions of the research project

Profiles of respondents and their units

The data requested in the questionnaire about the respondents was of two categories, one was about their units, viz.

- Age profile of the respondents' unit after establishment
- Business sectors of the respondents’ units

During the data collection, the units were contacted randomly, which were established in the range of 0-1 year to 45 years at the time of the data collection. Average of the respondents’ unit was 20.4 years. It indicated that the respondents’ units on an average were quite matured in business implying that the business processes were set in their units.
The analysis of the data for the business sectors of the respondents’ units shows that majority (40%) units were in mechanical engineering production. This is because Pune has concentrated base of mechanical engineering industry. Therefore, the inferences drawn are likely to be inclined towards mechanical engineering industries.

The other data sought from the questionnaire was related to the respondents as individuals, viz.

- Experience profile of the respondents
- Education profile of the respondents
- Authority profile of the respondents
- Computer training of the respondents

The data regarding experience, education authoritative position and their computer training of individuals in the sample units were requested to ensure that the data being collected is authentic and correct.

The respondents have varied experience ranging from 0-5 years to 45 years of professional life. However, majority of the respondents (52%) had experience between 6 to 20 years. The average experience of the respondents was calculated as 19.18 years. It shows that the respondents who provided the required information; were experienced and matured persons to offer their professional opinion.

On the similar lines, ‘Authority Profile’ of the respondents was analysed. Out of the total respondents almost 72% respondents were Proprietors, Partners or Directors of the company. In other words, they were owners, who could (have) taken decision about Information Technology investment and its usage. Of course, remaining 28% were also of high cadres, namely CEO (Chief Executive Officer), General Manager or Manager who can be
responsible for taking important decisions about Information Technology investment and usage.

The data regarding computer literacy of the respondents indicated that 100% of the respondents received some sort of computer training; although from various sources. Some of them (37%) adopted self learning mode, while 21% attended formal training course and remaining 42% received training in-house, perhaps on-the-job training. This approach also indicates conservative approach of the SME units of not opting formal / professional computer training.

Analysis of Information Technology environment in the respondents’ units

The analysis of data regarding Information Technology environment in the respondents’ unit provide interesting inferences. For this purpose following data was received and analysed.

- Number of years’ gap for computerisation after establishment of the respondents’ units.
- First computer application in the respondents' units
- Number of computers with respondents’ units
- Networking the computers for business

Majority (50%) units considered computerization in first 5 years from their establishment of the business, while another about 18% sought to be computerized within 6 to 10 years of inception. The remaining 32% were late to computerize their business processes from 11 years to 25 years of establishment of their businesses. The units which took longer time to bring in computerization in their units were established many years even before advent of desktop computers and were skilled in manual business
processes. As such they might be comparing usage of employees with that of computer. This any way is not justified as one cannot compare human-being with the machines. The new generation units of younger age entrepreneurs ought to have thought about using computers for repetitive tasks to get accurate results and employing human-beings for better skilled tasks.

First computer application in the respondents' units points out to the importance assigned by the respondent to a particular business process, which was considered for computerisation. Out of the total, for 60% units, the first computer application was ‘Accounts’. This is obvious from two points of view. The first being this application deals with money matters and secondly, because of the government regulation on accounting matters, these business processes are very well set manually. In fact from the British Raj, accounting is considered to be the first and foremost business process for any entity, may it be the government or the business or even a non-governmental organisation. Second preference for the computerisation is given to ‘office work’. Though, the respondents did not specify exactly its nature, but certainly this ‘office work’ excludes ‘accounts’. This ‘office work’ then is limited to using a very popular ‘Micro Soft Office’ package including the ‘Word’ or similar software packages available. The usage of the other applications like designing, administration and learning as the ‘first application’ is minimal.

Likewise, number of computers with respondents' units reveals intensity of usage of computers within the respondents' units. Only up to 10% units have as many as 30 computers, 20% units have about 12 computers; while remaining large (70%) have less than 5 computers in their units. In fact, there are few units which operate on one or two computers too. Of course, size of the unit and nature of operations will be the determinants of the possession of number of computers in the respondents' units.
However, willingness to computerise business processes by the respondents, also contributes to the large extent.

The networking of the computers for business shows business agility. Most (74%) of the multi-computer units have realised benefits of sharing computer and information resources and hence has formed ‘Local Area Networks’ (LAN) within the organisation. However, usage of ‘Wide Area networks’ (WAN) is conspicuously absent in all (100%) respondents’ unit. WAN allows connecting to other work-sites or the business associates for routine transactions by integrating mutual business processes. However, data analysis shows that none of the respondents’ unit has WAN. The reasons for this can range from non-awareness of WAN technology benefit to non-requirement due to nature of business to non-affordability of WAN.

However, owning a web-site has visible benefits. A static web-site, gives any-time business information about the products and services offered by the unit to the customer on-demand. Hence, 44% of the respondents have their web-sites hosted. However, 56% of the respondents do not still consider web-site to be necessary for furthering business or as tool for market promotion. Having a dynamic web-site or an e-commerce application may be distant dream for SMEs.

Impact of Information Technology on business processes

The success achieved by Information Technology in several of areas of human activities had been a subject of discussion for last at least a decade in India. Information Technology is the one where everybody has witnessed wide and rapid developments including convergence of various other technologies.
However, there had always been a debate about effectiveness and extent of effectiveness of Information Technology in the business practice. It also debated that whether usage of Information Technology is an ‘adoption’ – i.e. wilful usage and implementation or it is an ‘impact’ – coercive usage (or non-usage) and implementation (or non-implementation) of Information Technology; because of various reasons, in the business organisations.

This project was undertaken to study impact of Information Technology on business processes in small & medium scale sector.

During the course of reviewing the literature and designing the survey instrument, the researcher identified total eleven variables; which would indicate the impact of Information Technology of business processes of sample elements surveyed. These eleven variables are grouped into three categories as below:

- Extent of availability of Infrastructure
- Effects initiated by usage of IT
- Sensitivity about IT

Extent of availability of Infrastructure

This indicates the steps taken by the respondents’ unit to make available basic software, the training given to employees for usage and the extent to which the business process in computerised.

- Software packages being used in the respondent’s unit and their source
- Extent of computerisation in the respondent’s unit
- The level of computer training the respondents’ units
• Stage of implementation and the extent of completion of Information Technology

Out of the 12 software applications, which are generally required to automate business processes fully in any organisation; the respondents’ unit were ‘Basic Office Automation’ (94%) and ‘Financial Accounting’ (86%). Those of the respondents’ units involved in the designing for their production needs had purchased software package for ‘Design and Drawing’ (63%). Also most of the software was bought as ‘packages’ in ready-made format. These facts indicate that the applications these units find ‘important’ are only implemented.

To substantiate above findings, response to the ‘extent of computerisation’ also indicated that ‘Basic Office Automation’ and ‘Financial Accounting’ followed by ‘Design and Drawing’ are the applications where computerisation is reported to be highest. The inference can be only these applications may be sufficing major needs of Information Technology of the respondents’ unit or they may ignorant about the benefit which can derived because of computerisation.

The extent of computer training obviously refers to the business processes which are computerised and in active use. Data analysis and findings indicated that 58% respondents felt that computer training was sufficient, while 32% & 8% confess that it was too low or too general, respectively. It in other words means that the respondents are aware that better computer training can yield better results for using Information Technology.

The stages of implementation and the extent of completion of Information Technology are as given below:
Stage 1 - Functional Improvements
Stage 2 - Cross functional integration
Stage 3 - Process Redesign
Stage 4 - Business Re-engineering

The extent of implementation of these stages indicates progressiveness towards computerisation within the organisation. Data analysis shows that, unfortunately, in most of the respondents units were in the range of 0-39% for the 1-4 stages. In fact, for the stages 3 & 4 this range of percentage may be showing only the initiation of the stages. Hence it can be inferred that more efforts are need to be taken by the respondents’ units for implementation of Information Technology.

Effects initiated by usage of IT

- Actual responses about ‘Information Intensity’ by the respondents.
- Effect on productivity because of computerisation

‘Information Intensity’ for the organisation would create pressure and would drive computerisation within the organisation. The researcher had asked the respondents to rank total 20 facts on information in the order of importance.

The actual responses indicate that ‘Most Important’ ‘Information Intensity' for the respondents is found to be as given below:

- ‘Supply factors’,
 i. Variety & volume of transactions
i. Actual or potential linkage to suppliers

- ‘Internal factors’,
 i. Co-ordination required in production process

- ‘Market factors’
 i. Number of customers

- ‘Product factors’
 i. Nature of “Generic” product

Hence, it can be inferred that the respondents’ units would concentrate on geographically nearer customers, vendors and have smaller product range than other type of information required for business.

Another indicator to assess the impact of Information on is the respondents’ response about the change in productivity of various business processes. As expected ‘Office Automation’, ‘Financial Accounting’ and ‘Design & Drawing’ processes were reported to have increased productivity to 60-99%. In fact few units reported increase in productivity to the extent of 100%. However, the increase in productivity because of the computerisation of these applications; had not prompted usage of Information Technology for other business processes and their productivity.

Sensitivity about IT

- Perception about receiving benefits of Information Technology
- The respondents’ decision making about new IT investments
- Availability of “IT Road Map” / “IT Strategy”
• Obstacles or disadvantages for the use of Information Technology in the respondents’ units

Ultimately, the impact of Information Technology can be evident from the responses to the above mentioned variables.

The data regarding the variance in ‘benefits received’, response was inclined to positive values for majority of the benefits. However, there are responses showing negative variances too. If there is a large positive or negative variance between these two; then it could have significant effect on implementation and usage of Information Technology in the respondents’ units. If, the variance is greater on positive then the respondents could invest more in Information Technology and reap more benefits by automating more business processes. On the contrary, negative variance would discourage investment, implementation and usage in Information Technology.

In the era of liberalisation, globalisation and privatisation, increased domestic and global competition is inevitable. To remain ahead of the competition, quick, accurate and efficient response to customers is imperative. As mentioned in Chapter – II Review of Literature, Information Technology had been an enabler of efficient and effective customer reach. However, the respondents had given lesser importance to the factors like ‘Customer demand’, ‘Competition’ compared to the non-customer related factors like ‘More efficient technical reasons’, ‘More efficient administration work’, ‘To be ahead technically’, and ‘To develop new product/ business’ It can be inferred that because of the localised nature business and having local customers/ vendors; the respondents do not feel need to invest in Information Technology for better customer reach. Alternatively, the need to service the customers is being met by existing non-IT means.
For any business to be successful, a short and long term strategy is necessary, which of course would include ‘Road Map’ or strategy for implementing Information Technology within the organisation. Data analysis and findings in response to this question present very discouraging conclusion. Only 14% of the respondents had it in written form, 18% had in ‘oral’ form while another 18% are aware that it is required; but remaining 50% either feel that it was not required or not at aware that such subject as ‘IT Road Map / Strategy’. These facts only conclude that majority of the respondents do not aware or serious about important subject of implementation of Information Technology in their unit, for their own benefits.

The researcher had listed 15 obstacles/ disadvantages, which may be perceived as discouraging factors or threat to the non-investment and non-usage of Information Technology in the respondents’ organisation and asked them to rank. Data analysed indicates first five ranked obstacles / disadvantages as given below:

- Lack of availability good IT consultants like architects
- Continuous need to upgrade people
- Investment too high
- Greater IT know-how required which is not available in-house
- Difficult to measure benefits compared to investments.

The majority respondent SME units, because of the financial constraints were not able to employ a full-time qualified Information Technology person and hence, look for a good IT consultant. The researcher’s actual discussions during the interviews with the respondents indicate that SMEs require an IT consultant who can prepare IT Road Map, give advice and evaluate IT proposals and supervise IT implementation on a long term
basis. However, such personnel are not easily available or they are not able to conduct these tasks as per the expectations of the SMEs.

The remaining obstacles / disadvantages ultimately will revolve around direct out-flow of the funds, about which SMEs are very conscious. Thus, it can be inferred that either lack of funds or assigning priority of expenditure of funds is a major constraint for the SMEs for investment in Information Technology.

Conclusions drawn from analysis of hypotheses

The first hypothesis stated that the Information Technology has become an essential tool for SME sector. However, of all the operations ‘Purchase and Inventory Control’ which is probably heart and soul of business operations for the respondents. They believed that the decision making for the investment in Information Technology are closely related to the factor – ‘more efficient administrative work’ than any other operation and the reason for investment in the Information Technology sector. Unfortunately, no other operation found to be as important as this operation by SMEs.

The second hypothesis stated that there is no desired large-scale impact on the small and medium scale sector in terms of improving the business processes. ‘Continuous need to upgrade people’ and ‘Too little time by decision makers’ as the main obstacles or disadvantages were reported to be having positive influence on completion of even first two stages progressive stages of implementation – ‘Functional Improvements’ and ‘Cross Functional Integration’, respectively. As such improvement in the business processes and that too partially could be achieved only in the first two stages of implementation by the SMEs. The implementation of next two stages, viz. “Process redesign” and “Business re-engineering” is a long way to go.
The third hypothesis stated that this non-realisation of desired advantages/ benefits or non-improvement of Business Processes will act as a de-motivating factor in adoption of Information Technology for improving business processes. The researcher found two sets of respondents, which were named as clusters ‘A’ and ‘B’. In Cluster ‘A’, majority of the respondents would make investments in progressive stages of Information Technology as they found that there was a little variance between the benefits of computerization perceived before and actually received. However, in Cluster ‘B’, there are few respondents who would make investments in progressive stages of Information Technology even if they find that there is a large variance between benefits of computerization perceived before and actually received. Obviously such respondents’ reasons for implementing higher stages of Information Technology are independent of considerations of the benefits they might have received. Excluding the respondents’ in clusters ‘A’ and ‘B’, other respondents for who found that the variance between benefits of computerization perceived before and actually received is larger, would make less or no investment in progressive stages of implementation of Information Technology, in their units.

5.3 Suggestions

The literature reviews have elaborated that the advantages of application of Information Technology in the business organisations help improvement in business processes and consequentially productivity, in any organisations. Large organisations foresee this better and implement it too because of the technical, financial and human power they have. However, these conceived advantages and benefits of Information Technology need to be percolated to the small and medium scale sector business.
All large scale and core industries also prompted development of small and medium enterprises (SMEs) for their own benefit. More the SMEs are clustered around any core industry or business, better is the development of the core industry or the business. Following this convention, number of SMEs also established and developed around these core large scale industries and businesses; not only in India, but also across the world.

The government also recognised and promoted its special role of creating additional employment with low capital investment. Hence, right from the industry policy resolution of 1948, till date, there had been efforts to promote and stabilize SME sector. In fact by the end of Seventh Plan period, SME emerged as a dynamic and vibrant sector of the economy, contributing to 40% of the gross value output of the manufacturing sector.

However, there are some disadvantages too, which had been cited in earlier chapters:

1. Small customer base, hence highly vulnerable to the buyers’ business cycle
2. Financially weak, hence new investment decisions are only ‘need based’
3. The decision making is owner centric, than professional
4. Modern management techniques like Information Technology may be known but less practiced

Being aware of all these, large industries are also establishing their manufacturing bases at such a locations; where there is already a substantial presence of SMEs.
Important Role of Information Technology in SMEs

Owners of SMEs are experts in their own field of specialisation and at the same time keep their expenses low. Hence there will be always a need to cut down expenses by means of automation – may be of the manufacturing process or of the business process. Information Technology has given them opportunity to automate their repeated processes and perform same more accurately. Thus use of Information Technology in manufacturing processes or in the business process will increase productivity of the SME.

The incidence of implementation of Information Technology in SMEs is because of the two main reasons: Firstly, large scale industries wanted that the SME - ancillaries with them - should make it certain to follow their other business processes, such as inventory control and supply management. Hence, it was not only the technology, but also the best of the business processes and practices from the large industries were being followed by SMEs up to some extent. Secondly, the entrepreneurs who were dealing with drawing and design and conscious about quality assurance incorporated Information Technology for better output. In fact, IT is seen as a labour-saving device after which it is considered as a tool to give improved services.

Though the perceived advantages of Information Technology look attractive, but the perceived constraints actually decide the investment pattern in Information technology. The SMEs would not hesitate to buy a new production machine or hire a new employee as both of these will result in enhanced production. However, since purchase of a computer or software does not guarantee return of (tangible) investment, for SME owners an investment in Information Technology is always a matter of risk.
Honeycomb Model for Adoption of Information Technology in Small & Medium Enterprises (SMEs) sector

On this background narrated in the paragraphs above, for business processes improvement, resulting in increased productivity, SMEs should adopt to the Information Technology in totality. However, as has been seen in this research report, removing obstacles in adoption of Information Technology in SME sector is not possible single-handed efforts only by a SME. Hence there is a need for coordinated and integrated efforts towards this objective by various entities.

This researcher taking a clue from the nature suggests and developed “Honeycomb Model for Adoption of Information Technology in Small & Medium Enterprises (SMEs) sector” This researcher has used this analogy for drawing the suggestions; which have emerged from this research project.

This analogy is explained in the following figure.

• **Role of Large scale or core industries**

 Generally, majority of the SMEs are formed to be the ancillaries of the large scale or core industries established in that geographical area. These SMEs produce the items as per drawing and design and quality required by the large scale or core industries. It is observed in this research that for this reasons only the numbers of customers of SME are limited between 2 to 5 for many years.
Adoption of Information Technology in SMEs will improve if the large scale or core industries insist upon that their ancillary SME partner should adopt Information Technology initiatives as well as best business processes and practices already implemented in large scale or core industries. This will enhance productivity at SMEs. However, these large scale or core industries must help to implement these at SMEs at no cost of consulting. This will motivate the SMEs for
Information Technology and re-engineered business processes implementation in their units, as the primary inhibition of fear of technology coupled with return on investment will be annulled to a certain extent.

- **Support of Local Chambers of Commerce & Industries**

The Chambers of Commerce & Industries are the representatives of the businesses and industries in the geographical area. They look after the problems their members may have and try resolve them. They represent their members’ issues with the government. Because of such contacts with both the sides, they can play a larger role in helping their SME members in the adoption of information technology and improving business processes. They can offer workshops for the best practices on the usage of Information Technology and benchmarked business processes for SME members.

- **Initiatives from Information Technology Consultants**

The researcher during the survey many a times was told that there are not good and enough consultants for Information Technology for SMEs. In fact, in common practices an SME unit takes consultation for variety of core or non-core issues from variety of experts. There are consultants available for labour, provident fund, factory act, design, architects, structural, accounts, etc. However, either there are “good” consultants are not available or they may be perceived as costly by the SMEs. Hence, Information Technology consultants need to offer their services to SMEs in particular for preparing an “Information Technology Road Map” considering specific requirements for a particular SME. During the research it was also found that SMEs were sceptical about the return of investment in Information Technology,
because of its every changing nature. Hence, it is imperative that the Information Technology consultants develop and implement Information Technology performance measurement at the SMEs so that they will be better convinced.

• **Cost-effective hardware and software by Information Technology vendors**

Another concern of the SMEs expressed during this research was that the prices of the hardware and software are too high. This may be because of the fact that the SMEs do not perceive the benefits of Information Technology as they cannot be easily understood as they are intangible to a certain extent. Also another concern was that there are frequent changes or upgradations in the Information Technology. Both of these reasons were cited as de-motivating factors in adoption of Information Technology by SMEs.

On this background, the Information Technology vendors need to have benchmark the hardware and software for SMEs and offer them at very cost-effective prices. Further, the Information Technology vendors should ensure offer pre-sales, warranty and post warranty service with up gradation at a very reasonable cost. As far the provision of benchmarked softwares is concerned Micro Soft and SAP, etc. are understood to have provided some standardized solutions to SMEs.

• **Initiatives to be taken by the Central / State / Local government bodies**

The role of Central / State / Local government bodies in development of SMEs is un-doubtable. While the role of Central government in adoption of Information Technology can be strategic, the roles of State
and Local governments can be implementing operational policies. With usage of Information Technology the government machinery not only becomes efficient but also transparent. This has been proved number of times in various governmental applications of Information Technology. Most of the government departments are undergoing a digital transformation, but yet there is a lot of scope for development. Moreover, there is a need for all government departments need to work in unison, more integrated manner. The governments must realize that adopting to information technology will not only improve the efficiency and productivity of the industry, but also will increase the revenue, thus adding to the GDP.

Though all this is true for the entire industrial sector in general, but it is truer for the SME sector in particular. This is because; the SME sector is primarily operated by the owner-entrepreneurs who are more absorbed in resolving their routine problems than complying with the government demands. The government initiatives for Information Technology for SMEs may include:

- Tax concessions, subsidies on hardware and software as well as upgrades
- Incentives on 100% computerization and on-line transactions of documents (EDI – Electronic Data Interchange) and payments
- On line compliance of variety of government related processes
- Mandatory on line payments by large and core industrial units
- Making available infrastructure for common data centre for SME clusters
• Tax rebate for training program expenditure for effective usage of Information Technology on continuous basis
• Making available low cost, error-free and reliable internet infrastructure to SMEs

• Facility for continuous training to SME personnel

Another concern by the SMEs, evident from this research was their ever changing staff. Because of the intense competition and continuous pressure from the large and core industry customers, these SMEs cannot pay higher salaries. Consequently, generally there is a large turnover of trained staff, looking for better opportunities. Hence, there is a need for some organisation (like MKCL – Maharashtra Knowledge Corporation Ltd.) to take the initiative and design/develop computer awareness and operations courses and impart such training. It can include hardware and software selection, working with the IT consultants and vendors, basic trouble shooting and application operations training. These training courses can be offered at a low cost or no cost with help of the government or non-governmental organizations.

The suggestions given above can be summarized as there are efforts from every element in the honeycomb model of the adoption of Information Technology by SMEs. But perhaps they are isolated and may not be to the extent required. Moreover, there is a need of having integrated efforts for the adoption of Information Technology by SMEs. This will benefit not only the SMEs, but every element will get advantage by bonding together like natural honeycomb and reap the benefit of being part of the honeycomb.
5.4 Limitations of the study

A few limitations should be kept in mind in interpreting the findings of this study. This research is subject to some data-related limitations. First, all of the data were self-reported from one person who was Owner, Partner, Director, or Manager in each of the surveyed firms, which could potentially induce certain subjective biases. In this study, these office bearers' perspectives on the practices in information technology adoption were well represented. However, their views may not exactly represent the extent of practices because of their varied educational backgrounds, numbers of years of service in the surveyed SME unit and the perspective about the Information Technology in general. Still, we believe that the respondents, as managers, must have a certain level of awareness about their organization's practices and performance. Second, all of the companies were SMEs are located in industrial belt of Pune. Therefore, the results should be interpreted with caution when generalizing the results for other regions. Besides this, in Pune majority of the large and core industries are from mechanical and automobile sector and obviously the ancillary SMEs are also from the same sector. In this research, however, the researcher had made efforts to include other industrial sectors too. Therefore, the results may change because of the mix of the industrial sectors operating in the other territories.

5.5 Areas for further research

Future research should consider information technology adoption in SMEs from a different perspective, to investigate in detail about usage of information technology applications in workflow and project management, communication and coordination and knowledge management would affect business process reengineering at SMEs. In fact a comprehensive research can be undertaken to find out impact of a particular application
on a business process of interest. This ultimately should lead to the measurement of return of investment for the investment in Information Technology.

Another area of research would be a cross-industry comparison study of information technology adoption in SMEs to examine whether there are different influences for different industries or service sectors.