CONTENTS

LIST OF ACRONYMS AND ABBREVIATIONS

CHAPTER I: INTRODUCTION AND REVIEW OF LITERATURE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of staphylococcus aureus</td>
<td>3</td>
</tr>
<tr>
<td>Structure, virulence factors and pathogenesis</td>
<td>4</td>
</tr>
<tr>
<td>Genome</td>
<td>6</td>
</tr>
<tr>
<td>Carriage</td>
<td>6</td>
</tr>
<tr>
<td>Staphylococcus aureus infections</td>
<td>7</td>
</tr>
<tr>
<td>Anti-staphylococcal agents</td>
<td>9</td>
</tr>
</tbody>
</table>

1.2. DRUG RESISTANCE

- The urgent need for new antibacterial agents | 9 |
- Antibacterial drug discovery | 11 |
- Most problematic pathogens | 13 |
- Multidrug resistance - driving the need for new drugs | 13 |
- Mechanisms of action of antimicrobial agents | 15 |
- Molecular mechanism of drug resistance | 16 |
- Most common antibiotics mechanisms of drug resistance | 21 |
- Characteristics of an ideal drug target | 22 |

1.3. THE AMINOACYL-tRNA SYNTHETASES

- Aminoacyl-tRNA synthetase | 24 |
- Phenylalanine-tRNA synthetase | 28 |

1.4. CONCERNS FOR DRUG DISCOVERY AND DEVELOPMENT

- Stages of drug discovery | 29 |
- Determination of the crystal structure | 31 |
- X-ray crystallography and drug discovery | 31 |

1.5. INSILICO - ITS ORIGIN AND REVOLUTION

- Present *insilico* drug discovery | 36 |

1.6. PHARMACOPHORE STUDIES

- HipHop: Common features based alignments | 39 |
- HypoGen: Quantitative pharmacophore models | 40 |
CHAPTER II: LIGAND BASED PHARMACOPHORE MODELING STUDIES 94

2.1. MATERIALS AND METHODS 96

2.2. RESULTS AND DISCUSSION 100

2.2.1. Data preparation 100
2.2.2. Pharmacophore generation 100
2.2.3. Data analysis 103
2.2.4. Model validation 109
 CatScramble validation 113
 GH score validation 113

2.3. CONCLUSIONS 115

REFERENCES

CHAPTER III: COMFA AND COMSIA - STUDIES ON PHENYL ETHANOLAMINE DERIVATIVES 119

3.1. MOLECULAR MODELING 121

3.1.1. Dataset 121
3.1.2. Energy Minimization and Conformation generation 123
3.1.3. Alignment procedure 124

3.2. INTERACTION ENERGY FIELDS 125

3.3. PLS ANALYSIS 125

3.4. RESULTS AND DISCUSSION 136
 3.4.1. CoMFA Statistical details 126
 3.4.2. CoMSIA Statistical details 127
 3.4.3. Validation of CoMFA and CoMSIA models 130

3.5. INTERPRETATION OF CONTOUR MAPS 131
 3.5.1. CoMFA interaction fields 131
 3.5.2. CoMSIA interaction fields 133

REFERENCES

CHAPTER IV: HOMOLOGY MODELING AND MOLECULAR DYNAMICS OF
STAPHYLOCOCCUS AUREUS PHENYLALANYL-tRNA SYNTHETASE. 140

4.1. THE AMINOACYL-tRNA SYNTHETASE 140
 4.1.1. Mechanism of action 140
 4.1.2. Classification 141

4.2. PHENYLALANYL-tRNA SYNTHETASE 143

4.3. HOMOLOGY MODELING METHODOLOGY 143
 4.3.1. Protein structure modeling procedure 145
 4.3.2. Study work flow 145

4.4. MATERIALS AND METHODS 148
 4.4.1. Multiple sequence alignment 148
 4.4.2. Homology modeling 148
 4.4.3. Initial model refinement 149
 4.4.4. Ligand-supported model refinement 150
 4.4.5. MD simulation of receptor-membrane complexes. 150
4.5. **RESULTS AND DISCUSSION** 152

4.5.1. Homology modeling 152

 4.5.1.1. Template recognition 152
 4.5.1.2. Sequence alignment 154
 4.5.1.3. Model generation 155
 4.5.1.4. Loop refinement 157
 4.5.1.5. Model validation 157

4.5.2. Ligand-supported model refinement 161

4.5.3. Docking studies 161

4.5.4. Molecular dynamics simulation 162

4.5.5. Antagonist binding site analysis 166

4.6. **CONCLUSION** 168

REFERENCES