LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Single fix through of valve V1 in typical inverter.</td>
<td>10</td>
</tr>
<tr>
<td>1.2</td>
<td>D.C. voltage and current for persistent misfire</td>
<td>11</td>
</tr>
<tr>
<td>1.3(a)</td>
<td>Single commutation failure from valve V1 to valve V3</td>
<td>13</td>
</tr>
<tr>
<td>1.3(b)</td>
<td>Commutation failure in a thyristor-based line-commutated converter: (a) six-pulse thyristor converter; (b) inverter voltage during a single commutation failure; (c) inverter voltage during double commutation failure.</td>
<td>14</td>
</tr>
<tr>
<td>1.4</td>
<td>Bypass pair (1,4) two series switches and a bypass switch for by pass action.</td>
<td>17</td>
</tr>
<tr>
<td>1.5(a)</td>
<td>D.C. Line fault on the Rectifier Side: Rectifier voltage and current waveforms.</td>
<td>17</td>
</tr>
<tr>
<td>Fig. 1.5(b)</td>
<td>Current and commutation voltage of value 1 for D.C. line fault.</td>
<td>18</td>
</tr>
<tr>
<td>1.6</td>
<td>Structure of a Biological neuron</td>
<td>31</td>
</tr>
<tr>
<td>1.7</td>
<td>Artificial Neuron Model</td>
<td>32</td>
</tr>
<tr>
<td>1.8</td>
<td>Architecture of a layered feed-forward neural network</td>
<td>35</td>
</tr>
<tr>
<td>1.9</td>
<td>Hyperbolic tangent function</td>
<td>37</td>
</tr>
<tr>
<td>1.10</td>
<td>Sigmoid Function</td>
<td>37</td>
</tr>
<tr>
<td>1.11</td>
<td>Step Function</td>
<td>38</td>
</tr>
<tr>
<td>1.12</td>
<td>Ramp Function</td>
<td>38</td>
</tr>
<tr>
<td>1.13</td>
<td>Signum function or Gaussian function</td>
<td>39</td>
</tr>
<tr>
<td>1.14</td>
<td>Signal represented in time-amplitude is transformed into time-scale signal using wavelet transforms.</td>
<td>45</td>
</tr>
<tr>
<td>1.15</td>
<td>Time-based, frequency-based, and STFT views of a signal</td>
<td>48</td>
</tr>
<tr>
<td>1.16</td>
<td>Continuous wavelet transform</td>
<td>51</td>
</tr>
<tr>
<td>1.17</td>
<td>Discrete time wavelet transform</td>
<td>51</td>
</tr>
<tr>
<td>1.18</td>
<td>Time-Frequency Cells that Correspond to Dyadic Sampling</td>
<td>58</td>
</tr>
<tr>
<td>3.1</td>
<td>Main components of the converter station</td>
<td>119</td>
</tr>
<tr>
<td>Figure. 3.2</td>
<td>A Converter Bridge</td>
<td>122</td>
</tr>
<tr>
<td>Figure. 3.3</td>
<td>Current injection at the converter bus</td>
<td>123</td>
</tr>
<tr>
<td>Figure. 3.4</td>
<td>DC Network</td>
<td>123</td>
</tr>
<tr>
<td>Figure. 3.5</td>
<td>Generic model of VDCOL</td>
<td>125</td>
</tr>
<tr>
<td>Figure. 3.6</td>
<td>Equivalent circuit of a single phase transformer</td>
<td>125</td>
</tr>
<tr>
<td>Figure. 3.7</td>
<td>Equivalent circuit of a single phase transformer with dependent sources</td>
<td>126</td>
</tr>
<tr>
<td>Figure. 3.8</td>
<td>AC/DC System Diagram</td>
<td>126</td>
</tr>
<tr>
<td>Figure. 3.9</td>
<td>A Bridge Converter</td>
<td>127</td>
</tr>
<tr>
<td>Figure. 3.10</td>
<td>Current Injection in to AC system</td>
<td>127</td>
</tr>
<tr>
<td>Figure. 3.11</td>
<td>12-pulse converter unit showing transformer connections</td>
<td>128</td>
</tr>
<tr>
<td>Figure. 3.12</td>
<td>HVDC System</td>
<td>130</td>
</tr>
<tr>
<td>Figure. 3.13</td>
<td>VDCOL Characteristic; $I_d_{\text{ref}} = f(V_{dL})$</td>
<td>132</td>
</tr>
<tr>
<td>Figure. 3.14(a)</td>
<td>DC line voltage (p.u.) at the rectifier under normal operating condition</td>
<td>138</td>
</tr>
<tr>
<td>Figure. 3.14(b)</td>
<td>DC line current (p.u.) at the rectifier under normal operating condition</td>
<td>138</td>
</tr>
<tr>
<td>Figure. 3.14(c)</td>
<td>DC line voltage (p.u.) at the inverter under normal operating condition</td>
<td>138</td>
</tr>
<tr>
<td>Figure. 3.14(d)</td>
<td>DC line current (p.u.) at the inverter under normal operating condition</td>
<td>139</td>
</tr>
<tr>
<td>Figure. 3.14(e)</td>
<td>AC Voltage (p.u.) at the input terminals of the rectifier under normal operating condition</td>
<td>139</td>
</tr>
<tr>
<td>Figure. 3.14(f)</td>
<td>AC current (p.u.) at the input terminals of the rectifier under normal operating condition</td>
<td>139</td>
</tr>
<tr>
<td>Figure. 3.14(g)</td>
<td>AC voltage (p.u.) at the input terminals of the inverter during normal operating condition</td>
<td>140</td>
</tr>
<tr>
<td>Figure. 3.14(h)</td>
<td>AC current (p.u.) at the input terminals of the inverter under normal operating condition</td>
<td>140</td>
</tr>
<tr>
<td>Figure. 3.15(a)</td>
<td>DC line voltage at the rectifier during DC line fault with a fault resistance of 1Ω at 50 kM from the rectifier end.</td>
<td>143</td>
</tr>
<tr>
<td>Figure. 3.15(b)</td>
<td>DC line current at the rectifier during DC line fault with a fault resistance of 1Ω at 50 kM from the rectifier end.</td>
<td>144</td>
</tr>
<tr>
<td>Figure. 3.15(c)</td>
<td>DC line voltage at the inverter during DC line fault with a fault resistance of 1Ω at 50 kM from the rectifier end.</td>
<td>144</td>
</tr>
<tr>
<td>Figure. 3.15(d)</td>
<td>DC line currents at the inverter during DC line fault with a fault resistance of 1Ω at 50 kM from the rectifier end.</td>
<td>144</td>
</tr>
<tr>
<td>Figure. 3.15(e)</td>
<td>AC voltage at the input terminals of the rectifier during DC line fault with a fault resistance of 1Ω at 50 kM from the rectifier end.</td>
<td>145</td>
</tr>
</tbody>
</table>
Figure. 3.15(f) AC current at the input terminals of the rectifier during DC line fault with a fault resistance of 1Ω at 50 kM from the rectifier end.

Figure. 3.15(g) AC voltage at the input terminals of the inverter during DC line fault with a fault resistance of 1Ω at 50 kM from the rectifier end.

Figure. 3.15(h) AC current at the input terminals of the inverter during DC line fault with a fault resistance of 1Ω at 50 kM from the rectifier end.

Figure. 3.16(a) DC line voltage at the rectifier during DC line fault with a fault resistance of 1Ω at 100 km from the rectifier end.

Figure. 3.16(b) DC line current at the rectifier during DC line fault with a fault resistance of 1Ω at 100 kM from the rectifier end.

Figure. 3.16(c) DC line voltage at the inverter during DC line fault with a fault resistance of 1Ω at 100 kM from the rectifier end.

Figure. 3.16(d) DC line current at the inverter during DC line fault with a fault resistance of 1Ω at 100 kM from the rectifier end.

Figure. 3.16(e) AC voltage at the input end of the rectifier during DC line fault with a fault resistance of 1Ω at 100 kM from the rectifier end.

Figure. 3.16(f) AC current at the input end of the rectifier during DC line fault with a fault resistance of 1Ω at 100 kM from the rectifier end.

Figure. 3.16(g) AC voltage at the input terminals of the inverter during DC line fault with a fault resistance of 1Ω at 100 kM from the rectifier end.

Figure. 3.16(h) AC current at the input terminals of the inverter during DC line fault with a fault resistance of 1Ω at 100 kM from the rectifier end.

Figure. 3.17(a) DC line voltage at the rectifier during DC line fault with a fault resistance of 1Ω at 150 kM from the rectifier end.

Figure. 3.17(b) DC line current at the rectifier during DC line fault with a fault resistance of 1Ω at 150 kM from the rectifier end.

Figure. 3.17(c) DC line voltage at the inverter during DC line fault with a fault resistance of 1Ω at 150 kM from the rectifier end.

Figure. 3.17(d) DC line current at the inverter during DC line fault with a fault resistance of 1Ω at 150 kM from the rectifier end.

Figure. 3.17(e) AC voltage at the input terminals of the rectifier during DC line fault with a fault resistance of 1Ω at 150 kM from the rectifier end.

Figure. 3.17(f) AC current at the input terminals of the rectifier during DC line fault with a fault resistance of 1Ω at 150 kM from the rectifier end.

Figure. 3.17(g) AC voltage at the input terminals of the inverter during DC line fault with a fault resistance of 1Ω at 150 kM from the rectifier end.
Figure. 3.17(h) AC current at the input terminals of the inverter during DC line fault with a fault resistance of 1Ω at 150kM from the rectifier end.

Figure. 3.18(a) DC line voltage at the rectifier during DC line fault with a fault resistance of 1Ω at 200kM from the rectifier end.

Figure. 3.18(b) DC line current at the rectifier during DC line fault with a fault resistance of 1Ω at 200kM from the rectifier end.

Figure. 3.18(c) DC line voltage at the inverter during DC line fault with a fault resistance of 1Ω at 200kM from the rectifier end.

Figure. 3.18(d) DC line current at the inverter during DC line fault with a fault resistance of 1Ω at 200kM from the rectifier end.

Figure. 3.18(e) AC voltage at the input terminals of the rectifier during DC line fault with a fault resistance of 1Ω at 200kM from the rectifier end.

Figure. 3.18(f) AC current at the input terminals of the rectifier during DC line fault with a fault resistance of 1Ω at 200kM from the rectifier end.

Figure. 3.18(g) AC voltage at the input terminals of the inverter during DC line fault with a fault resistance of 1Ω at 200kM from the rectifier end.

Figure. 3.18(h) AC current at the input terminals of the inverter during DC line fault with a fault resistance of 1Ω at 200kM from the rectifier end.

Figure. 3.19(a) DC line voltage at the rectifier during DC line fault with a fault resistance of 1Ω at 250kM from the rectifier end.

Figure. 3.19(b) DC line current at the rectifier during DC line fault with a fault resistance of 1Ω at 250kM from the rectifier end.

Figure. 3.19(c) DC line voltage at the inverter during DC line fault with a fault resistance of 1Ω at 250kM from the rectifier end.

Figure. 3.19(d) DC line current at the inverter during DC line fault with a fault resistance of 1Ω at 250kM from the rectifier end.

Figure. 3.19(e) AC voltage at the input terminals of the rectifier during DC line fault with a fault resistance of 1Ω at 250kM from the rectifier end.

Figure. 3.19(f) AC current at the input terminals of the rectifier during DC line fault with a fault resistance of 1Ω at 250kM from the rectifier end.

Figure. 3.19(g) AC voltage at the input terminals of the inverter during DC line fault with a fault resistance of 1Ω at 250kM from the rectifier end.

Figure. 3.19(h) AC current at the input terminals of the inverter during DC line fault with a fault resistance of 1Ω at 250 kM from the rectifier end.

Figure. 3.20(a) DC line voltage at the rectifier during DC line fault with a fault resistance of 20Ω at 50kM from the rectifier terminals.
Figure. 3.20(b) DC line current at the rectifier during DC line fault with a fault resistance of 20Ω at 50kM from the rectifier end.

Figure. 3.20(c) DC line voltage at the inverter during DC line fault with a fault resistance of 20Ω at 50kM from the rectifier end.

Figure. 3.20(d) DC line current at the inverter during DC line fault with a fault resistance of 20Ω at 50kM from the rectifier end.

Figure. 3.20(e) AC voltage at the input terminals of the rectifier during DC line fault with a fault resistance of 20Ω at 50kM from the rectifier end.

Figure. 3.20(f) AC current at the input terminals of the rectifier during DC line fault with a fault resistance of 20Ω at 50kM from the rectifier end.

Figure. 3.20(g) AC voltage at the input terminals of the inverter during DC line fault with a fault resistance of 20Ω at 50kM from the rectifier end.

Figure. 3.20(h) AC current at the input terminals of the inverter during DC line fault with a fault resistance of 20Ω at 50kM from the rectifier end.

Figure. 3.21(a) DC line voltage at the rectifier during DC line fault with a fault resistance of 20Ω at 100kM from the rectifier end.

Figure. 3.21(b) DC line current at the rectifier during DC line fault with a fault resistance of 20Ω at 100kM from the rectifier end.

Figure. 3.21(c) DC line voltage at the inverter during DC line fault with a fault resistance of 20Ω at 100kM from the rectifier end.

Figure. 3.21(d) DC line current at the inverter during DC line fault with a fault resistance of 20Ω at 100kM from the rectifier end.

Figure. 3.21(e) AC voltage at the input terminals of the rectifier during DC line fault with a fault resistance of 20Ω at 100kM from the rectifier end.

Figure. 3.21(f) AC current at the input terminals of the rectifier during DC line fault with a fault resistance of 20Ω at 100kM from the rectifier end.

Figure. 3.21(g) AC voltage at the input terminals of the inverter during DC line fault with a fault resistance of 20Ω at 100kM from the rectifier end.

Figure. 3.21(h) AC current at the input terminals of the inverter during DC line fault with a fault resistance of 20Ω at 100kM from the rectifier end.

Figure. 3.22(a) DC line voltage at the rectifier during DC line fault with a fault resistance of 20Ω at 150kM from the rectifier end.

Figure. 3.22(b) DC line current at the rectifier during DC line fault with a fault resistance of 20Ω at 150kM from the rectifier end.

Figure. 3.22(c) DC line voltage at the inverter during DC line fault with a fault resistance of 20Ω at 150kM from the rectifier end.
Figure. 3.22(d) DC line current at the inverter during DC line fault with a fault resistance of 20Ω at 150kM from the rectifier end.

Figure. 3.22(e) AC voltage at the input end of the rectifier during DC line fault with a fault resistance of 20Ω at 150kM from the rectifier end.

Figure. 3.22(f) AC current at the input terminals of the rectifier during DC line fault with a fault resistance of 20Ω at 150kM from the rectifier end.

Figure. 3.22(g) AC voltage at the input terminals of the inverter during DC line fault with a fault resistance of 20Ω at 150kM from the rectifier end.

Figure. 3.22(h) AC current at the input terminals of the inverter during DC line fault with a fault resistance of 20Ω at 150kM from the rectifier end.

Figure. 3.23(a) DC line voltage at the rectifier during DC line fault with a fault resistance of 20Ω at 200kM from the rectifier end.

Figure. 3.23(b) DC line current at the rectifier during DC line fault with a fault resistance of 20Ω at 200kM from the rectifier end.

Figure. 3.23(c) DC line voltage at the inverter during DC line fault with a fault resistance of 20Ω at 200kM from the rectifier end.

Figure. 3.23(d) DC line current at the inverter during DC line fault with a fault resistance of 20Ω at 200kM from the rectifier end.

Figure. 3.23(e) AC voltage at the input terminals of the rectifier during DC line fault with a fault resistance of 20Ω at 200kM from the rectifier end.

Figure. 3.23(f) AC current at the input terminals of the rectifier during DC line fault with a fault resistance of 20Ω at 200kM from the rectifier end.

Figure. 3.23(g) AC voltage at the input terminals of the inverter during DC line fault with a fault resistance of 20Ω at 200kM from the rectifier end.

Figure. 3.23(h) AC current at the input terminals of the inverter during DC line fault with a fault resistance of 20Ω at 200kM from the rectifier end.

Figure. 3.24(a) DC line voltage at the rectifier during DC line fault with a fault resistance of 20Ω at 250kM from the rectifier end.

Figure. 3.24(b) DC line current at the rectifier during DC line fault with a fault resistance of 20Ω at 250kM from the rectifier end.

Figure. 3.24(c) DC line voltage at the inverter during DC line fault with a fault resistance of 20Ω at 250kM from the rectifier end.

Figure. 3.24(d) DC line current at the inverter during DC line fault with a fault resistance of 20Ω at 250kM from the rectifier end.

Figure. 3.24(e) AC voltage at the input terminals of the rectifier during DC line fault with a fault resistance of 20Ω at 250kM from the rectifier end.
Figure. 3.24(f) AC current at the input terminals of the rectifier during DC line fault with a fault resistance of $20\,\Omega$ at 250kM from the rectifier end. 182

Figure. 3.24(g) AC voltage at the input terminals of the inverter during DC line fault with a fault resistance of $20\,\Omega$ at 250kM from the rectifier end. 182

Figure. 3.24(h) AC current at the input terminals of the inverter during DC line fault with a fault resistance of $20\,\Omega$ at 250kM from the rectifier end. 182

Figure. 3.25(a) DC line voltage at the rectifier during single line to ground fault (LG) on the AC side of the rectifier. 186

Figure. 3.25(b) DC line current at the rectifier during single line to ground fault (LG) on the AC side of the rectifier. 186

Figure. 3.25(c) DC line voltage at the inverter during single line to ground fault (LG) on the AC side of the rectifier. 186

Figure. 3.25(d) DC line current at the inverter during single line to ground fault (LG) on the AC side of the rectifier. 187

Figure. 3.25(e) AC voltage at the input terminals of the rectifier during single line to ground fault (LG) on the AC side of the rectifier. 187

Figure. 3.25(f) AC current at the input terminals of the rectifier during single line to ground fault (LG) on the AC side of the rectifier. 187

Figure. 3.25(g) DC line voltage at the inverter during single line to ground fault (LG) on the AC side of the rectifier. 188

Figure. 3.25(h) AC voltage at the input terminals of the inverter during single line to ground fault (LG) on the AC side of the rectifier. 188

Figure. 3.26(a) DC line voltage at the rectifier during line to line fault (LL) on the AC side of the rectifier. 189

Figure. 3.26(b) DC line current at the rectifier during line to line fault (LL) on the AC side of the rectifier. 190

Figure. 3.26(c) DC line voltage at the inverter during line to line fault (LL) on the AC side of the rectifier. 190

Figure. 3.26(d) DC line current at the inverter during line to line fault (LL) on the AC side of the rectifier. 190

Figure. 3.26(e) AC voltage at the input terminals of the rectifier during line to line fault (LL) on the AC side of the rectifier. 191

Figure. 3.26(f) AC current at the input terminals of the rectifier during line to line fault (LL) on the AC side of the rectifier. 191

Figure. 3.26(g) AC voltage at the terminals of the inverter during line to line fault (LL) on the AC side of the rectifier. 191
Figure. 3.26(h) AC current at the terminals of the inverter during line to line fault (LL) on the AC side of the rectifier.

Figure. 3.27(a) DC line voltage at the rectifier during double line to ground fault (LLG) on the AC side of the rectifier.

Figure. 3.27(b) DC line current at the rectifier during double line to ground fault (LLG) on the AC side of the rectifier.

Figure. 3.27(c) DC line voltage at the inverter during double line to ground fault (LLG) on the AC side of the rectifier.

Figure. 3.27(d) DC line current at the inverter during double line to ground fault (LLG) on the AC side of the rectifier.

Figure. 3.27(e) AC voltage at the input terminals of the rectifier during double line to ground fault (LLG) on the AC side of the rectifier.

Figure. 3.27(f) AC current at the input terminals of the rectifier during double line to ground fault (LLG) on the AC side of the rectifier.

Figure. 3.27(g) AC voltage at the terminals of the rectifier during double line to ground fault (LLG) on the AC side of the rectifier.

Figure. 3.27(h) AC current at the terminals of the inverter during double line to ground fault (LLG) on the AC side of the rectifier.

Figure. 3.28(a) DC line voltage at the rectifier during symmetrical fault (LLL) on the AC side of the rectifier.

Figure. 3.28(b) DC line current at the rectifier during symmetrical fault (LLL) on the AC side of the rectifier.

Figure. 3.28(c) DC line voltage at the inverter during symmetrical fault (LLL) on the AC side of the rectifier.

Figure. 3.28(d) DC line current at the inverter during symmetrical fault (LLL) on the AC side of the rectifier.

Figure. 3.28(e) AC voltage at the input terminals of the rectifier during symmetrical fault (LLL) on the AC side of the rectifier.

Figure. 3.28(f) AC current at the input terminals of the rectifier during symmetrical fault (LLL) on the AC side of the rectifier.

Figure. 3.28(g) AC voltage at the terminals of the inverter during symmetrical fault (LLL) on the AC side of the rectifier.

Figure. 3.28(h) AC current at the terminals of the inverter during symmetrical fault (LLL) on the AC side of the rectifier.

Figure. 3.29 (a) DC line voltage at the rectifier during single line to ground fault (LG) on the AC side of the inverter.
Figure. 3.29(b) DC line current at the rectifier during single line to ground fault (LG) on the AC side of the inverter.

Figure. 3.29(c) DC line voltage at the inverter during single line to ground fault (LG) on the AC side of the inverter.

Figure. 3.29(d) DC line current at the inverter during single line to ground fault (LG) on the AC side of the inverter.

Figure. 3.29(e) AC voltage at the input terminals of the rectifier during single line to ground fault (LG) on the AC side of the inverter.

Figure. 3.29(f) AC current at the input terminals of the rectifier during single line to ground fault (LG) on the AC side of the inverter.

Figure. 3.29(g) AC voltage at the terminals of the rectifier during single line to ground fault (LG) on the AC side of the inverter.

Figure. 3.29(h) AC current at the terminals of the inverter during single line to ground fault (LG) on the AC side of the inverter.

Figure. 3.30(a) DC line voltage at the rectifier during line to line fault (LL) on the AC side of the inverter.

Figure. 3.30(b) DC line current at the rectifier during line to line fault (LL) on the AC side of the inverter.

Figure. 3.30(c) DC line voltage at the inverter during line to line fault (LL) on the AC side of the inverter.

Figure. 3.30(d) DC line inverter at the inverter during line to line fault (LL) on the AC side of the inverter.

Figure. 3.30(e) AC voltage at the input terminals of the rectifier during line to line fault (LL) on the AC side of the inverter.

Figure. 3.30(f) AC current at the input terminals of the rectifier during line to line fault (LL) on the AC side of the inverter.

Figure. 3.30(g) AC voltage at the terminals of the rectifier during line to line fault (LL) on the AC side of the inverter.

Figure. 3.30(h) AC current at the terminals of the inverter during line to line fault (LL) on the AC side of the inverter.

Figure. 3.31(a) DC line voltage at the rectifier during double line to ground fault (LLG) on the AC side of the inverter.

Figure. 3.31(b) DC line current at the rectifier during double line to ground fault (LLG) on the AC side of the inverter.

Figure. 3.31(c) DC line voltage at the inverter during double line to ground fault (LLG) on the AC side of the inverter.
Figure 3.31(d) DC line current at the inverter during double line to ground fault (LLG) on the AC side of the inverter.

Figure 3.31(e) AC voltage at the input terminals of the rectifier during double line to ground fault (LLG) on the AC side of the inverter.

Figure 3.31(f) AC current at the input terminals of the rectifier during double line to ground fault (LLG) on the AC side of the inverter.

Figure 3.31(g) AC voltage at the terminals of the inverter during double line to ground fault (LLG) on the AC side of the inverter.

Figure 3.31(h) AC current at the terminals of the inverter during double line to ground fault (LLG) on the AC side of the inverter.

Figure 3.32(a) DC line voltage at the rectifier during symmetrical fault (LLL) on the AC side of inverter.

Figure 3.32(b) DC line current at the rectifier during symmetrical fault (LLL) on the AC side of inverter.

Figure 3.32(c) DC line voltage at the inverter during symmetrical fault (LLL) on the AC side of inverter.

Figure 3.32(d) DC line current at the inverter during symmetrical fault (LLL) on the AC side of inverter.

Figure 3.32(e) AC line voltage at the rectifier during symmetrical fault (LLL) on the AC side of inverter.

Figure 3.32(f) AC line current at the rectifier during symmetrical fault (LLL) on the AC side of inverter.

Figure 3.32(g) AC line voltage at the inverter during symmetrical fault (LLL) on the AC side of inverter.

Figure 3.32(h) AC line current at the inverter during symmetrical fault (LLL) on the AC side of inverter.

Figure 3.33 Reverse voltage travelling wave at the rectifier under normal operating condition

Figure 3.34(a) Reverse voltage travelling wave at the rectifier during DC line fault with a fault resistance of 1Ω at 50kM from the rectifier end.

Figure 3.34(b) Reverse voltage travelling wave at the rectifier during DC line fault with a fault resistance of 1Ω at 100kM from the rectifier end.

Figure 3.34(c) Reverse voltage travelling wave at the rectifier during DC line fault with a fault resistance of 1Ω at 150kM from the rectifier end.

Figure 3.34(d) Reverse voltage travelling wave at the rectifier during DC line fault with a fault resistance of 1Ω at 200kM from the rectifier end.
Figure. 3.34(e) Reverse voltage travelling wave at the rectifier during DC line fault with a fault resistance of 1Ω at 250kM from the rectifier end.

Figure. 3.35(a) Reverse voltage travelling wave at the rectifier during DC line fault with a fault resistance of 20Ω at 50kM from the rectifier end.

Figure. 3.35(b) Reverse voltage travelling wave at the rectifier during DC line fault with a fault resistance of 20Ω at 100kM from the rectifier end.

Figure. 3.35(c) Reverse voltage travelling wave at the rectifier during DC line fault with a fault resistance of 20Ω at 150kM from the rectifier end.

Figure. 3.35(d) Reverse voltage travelling wave at the rectifier during DC line fault with a fault resistance of 20Ω at 200kM from the rectifier end.

Figure. 3.35(e) Reverse voltage travelling wave at the rectifier during DC line fault with a fault resistance of 20Ω at 250kM from the rectifier end.

Figure. 3.36(a) Reverse voltage travelling wave at the rectifier during single line to ground fault (LG) on the AC side of the rectifier.

Figure. 3.36(b) Reverse voltage travelling wave at the rectifier during line to line fault (LL) on the AC side of the rectifier.

Figure. 3.36(c) Reverse voltage travelling wave at the rectifier during double line to ground fault (LLG) on the AC side of the rectifier.

Figure. 3.36(d) Reverse voltage travelling wave at the rectifier during symmetrical fault (LLL) on the AC side of the rectifier.

Figure. 3.37(a) Reverse voltage travelling wave at the rectifier during single line to ground fault (LG) on the AC side of the inverter.

Figure. 3.37(b) Reverse voltage travelling wave at the rectifier during line to line fault (LL) on the AC side of the inverter.

Figure. 3.37(c) Reverse voltage travelling wave at the rectifier during double line to ground fault (LLG) on the AC side of the inverter.

Figure. 3.37(d) Reverse voltage travelling wave at the rectifier during symmetrical fault (LLL) on the AC side of the inverter.

Figure. 3.38(a) FFT plot of the reverse voltage travelling wave at the rectifier during normal operating condition.

Figure. 3.38(b) FFT plot of the reverse voltage travelling wave at the rectifier during DC line fault at various distances from the rectifier end when the fault resistance is 1Ω.

Figure. 3.38(c) FFT plot of the reverse voltage travelling wave at the rectifier during DC line fault at various distances from the rectifier end when the fault resistance is 20Ω.
Figure. 3.38(d) FFT plot of the reverse voltage travelling wave at the rectifier during various AC fault at the input terminals of the rectifier. 226

Figure. 3.38(e) FFT plot of the reverse voltage travelling wave at the rectifier during various AC fault at the input terminals of the inverter. 226

Figure. 3.39(a) Percentage Error Vs Fault Location. 228

Figure. 3.39(b) Mean square error curve during the training of ANN for the classification of faults in HVDC system 231

Figure. 3.40 Detailed wavelet coefficients in four levels for the reverse voltage travelling wave at the rectifier under normal operating condition 237

Figure. 3.41 (a) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during single line to ground fault (LG) on the AC side of the rectifier. 237

Figure. 3.41(b) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during line to line fault (LL) on the AC side of the rectifier. 237

Figure. 3.41(c) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during double line to ground fault (LLG) on the AC side of the rectifier. 238

Figure. 3.41(d) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during symmetrical fault (LLL) on the AC side of the rectifier. 238

Figure. 3.42(a) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during single line to ground fault (LG) on the AC side of the inverter. 238

Figure. 3.42(b) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during line to line fault (LL) on the AC side of the inverter. 239

Figure. 3.42(c) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during double line to ground fault (LLG) on the AC side of the inverter. 239

Figure. 3.42(d) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during symmetrical fault (LLL) on the AC side of the inverter. 239

Figure. 3.43(a) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during DC line fault with a fault resistance of 1Ω at 50 kM from the rectifier end. 240

Figure. 3.43(b) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during DC line fault with a fault resistance of 20Ω at 50 kM from the rectifier end. 240

Figure. 3.44(a) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during DC line fault with a fault resistance of 1Ω at 100 kM from the rectifier end. 240

Figure. 3.44 (b) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during DC line fault with a fault resistance of 20Ω at 100 kM from the rectifier end. 241
Figure. 3.45(a) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during DC line fault with a fault resistance of 1Ω at 150 kM from the rectifier end.

Figure. 3.45(b) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during DC line fault with a fault resistance of 20Ω at 150 kM from the rectifier end.

Figure. 3.46(a) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during DC line fault with a fault resistance of 1Ω at 200 kM from the rectifier end.

Figure. 3.46(b) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during DC line fault with a fault resistance of 20Ω at 200 kM from the rectifier end.

Figure. 3.47(a) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during DC line fault with a fault resistance of 1Ω at 250 kM from the rectifier end.

Figure. 3.47(b) Detailed wavelet coefficients in four levels for the RVTW at the rectifier during DC line fault with a fault resistance of 20Ω at 250 kM from the rectifier end.

Figure. 3.48(a) Detailed wavelet coefficients (levels-1) for the RVTW at the rectifier during DC line fault at 50 kM from the rectifier end.

Figure. 3.48(b) Detailed wavelet coefficients (levels-1) for the RVTW at the rectifier during DC line fault at 100 kM from the rectifier end.

Figure. 3.48(c) Detailed wavelet coefficients (levels-1) for the RVTW at the rectifier during DC line fault at 150 kM from the rectifier end.

Figure. 3.48(d) Detailed wavelet coefficients (levels-1) for the RVTW at the rectifier during DC line fault at 200 kM from the rectifier end.

Figure. 3.48(e) Detailed wavelet coefficients (levels-1) for the RVTW at the rectifier during DC line fault at 250 kM from the rectifier end.

Figure. 3.49 Comparison of the fault location systems with exact fault location

Figure. 4.1 Sectional Distribution of HVDC converter Transformer. A: Tapping winding, B: HV winding, C: HVDC Transformer winding (star)

Figure. 4.2 Simulation model of the transformer

Figure 4.3 Equivalent Circuit of a Single Winding of Transformer

Figure 4.4 Self inductance of a circular element

Figure 4.5 Schematic diagram of two axially separated filaments if different diameters

Figure 4.6 Configuration of interleaved winding
Figure 4.7(a) Configuration of Plain Disc Winding
Figure 4.7(b) Electrical equivalent network of the simulation model
Figure 4.8(a) Calculation process for the transfer function method
Figure 4.8(b) Transfer function method
Figure 4.9(a) Standard Impulse Voltage Applied in time domain
Figure 4.9(b) Standard Impulse Voltage Applied in frequency domain
Figure 4.10(a) Neutral current of the converter transformer during normal operation
Figure 4.10(b) FFT analysis of the neutral current signal during the normal operating condition
Figure 4.11(a) Magnitude Vs. Frequency plot for the FFT analysis of the wavelet transformed signals 1-7 listed in Table 4.3.
Figure 4.11(b) Magnitude vs. Frequency plot for the FFT analysis of the wavelet transformed signals 8-14 listed in Table 4.3.
Figure 4.11(c) Magnitude vs. Frequency plot for the FFT analysis of the wavelet transformed signals 15-17 listed in Table 4.3.
Figure 4.12(a) Wavelet transform of the input signal for a corner frequency of 9770 Hz, $\sigma^2=0.25$
Figure 4.12(b) Wavelet transform of the input signal for a corner frequency of 48.845 kHz, $\sigma^2=16$
Figure 4.12(c) Wavelet transform of the input signal for a corner frequency of 68.342 kHz, $\sigma^2=256$
Figure 4.12(d) Wavelet transform of the input signal for a corner frequency of 106.870 kHz, $\sigma^2=64$
Figure 4.12(f) Wavelet transform of the input signal for a corner frequency of 204.937 kHz, $\sigma^2=256$
Figure 4.12(g) Wavelet transform of the input signal for a corner frequency of 243.853 kHz, $\sigma^2=512$
Figure 4.12(h) Wavelet transform of the input signal for a corner frequency of 293.252 kHz, $\sigma^2=512$
Figure 4.12(i) Wavelet transform of the input signal for a corner frequency of 331.74 kHz, $\sigma^2=512$
Figure 4.12(j) Wavelet transform of the input signal for a corner frequency of 380.95 kHz, $\sigma^2=1020$
Figure 4.12(k) Wavelet transform of the input signal for a corner frequency of 410.40 kHz, $\sigma^2=1020$
Figure. 4.12(l) Wavelet transform of the input signal for a corner frequency of 430.37 kHz, $\sigma^2=5120$

Figure. 4.12(m) Wavelet transform of the input signal for a corner frequency of 458.89 kHz, $\sigma^2=1020$

Figure. 4.12(n) Wavelet transform of the input signal for a corner frequency of 488.45 kHz, $\sigma^2=1020$

Figure. 4.12(o) Wavelet transform of the input signal for a corner frequency of 527.27 kHz, $\sigma^2=2050$

Figure. 4.12(p) Wavelet transform of the input signal for a corner frequency of 547.20 Hz, $\sigma^2=1020$

Figure. 4.12(q) Wavelet transform of the input signal for a corner frequency of 566.68 kHz, $\sigma^2=4100$

Figure. 4.12(r) Wavelet transform of the input signal for a corner frequency of 585.43 kHz, $\sigma^2=5120$

Figure. 4.13 Reconstructed and Original Neutral current signals.

Figure 4.14(a) Recorded Neutral Current during normal operating condition

Figure 4.14(b) Recorded Neutral Current during inter turn fault in LV winding fault

Figure 4.14(c) Recorded Neutral Current during inter turn fault in HV winding fault

Figure 4.14(d) Recorded Neutral Current during winding to winding fault

Figure 4.14(e) Recorded Neutral Current during winding to ground fault

Figure 4.15 Normalized local average values as input patterns for training neural network.

Figure 4.16 Normalized local maximum values as input patterns for training neural network.

Figure 4.17 Mean square Error plot after training using local average patterns as training sets.

Figure 4.18 Error plot after training using local maximum patterns as training sets.

Figure 4.19 Summary of the test results for the classification of faults in converter transformer.

Figure. 4.20(a) Wavelet transform of the neutral current of the HVDC converter transformer during No fault (Normal Operation)

Figure. 4.20(b) Wavelet transform of the neutral current of the HVDC converter transformer during Turn to Turn Fault

Figure. 4.20(c) Wavelet transform of the neutral current of the HVDC converter transformer during Winding to winding fault
Figure 4.20(d) Wavelet transform of the neutral current of the HVDC converter transformer during Turn to Ground fault.

Figure 4.21 Mean square error curve during the training of ANN for the classification of faults in converter transformer

Figure 4.22 Photographs of 61MVA, 11.5/230kV Generator Transformer

Figure 4.23 Photograph of upper half HV Winding of Generator Transformer

Figure 4.24 Photograph of Tapping Winding of Generator Transformer

Figure 4.25 Electrical Connection without tapping winding for 11.5kV/230kV GT.

Figure 4.26 Electrical Connection with HV and tapping winding of GT.

Figure 4.27 Electrical equivalent circuit of generator transformer

Figure 4.28 Circuit diagram for experimental setup

Figure 4.29 Neutral Current recorded on oscilloscope across 20 ohms shunt

Figure 4.30(a) Close up view of MOV / shunt Connection in HV winding

Figure 4.30(b) Voltage - Current characteristic of MOV

Figure 4.31 Neutral Current Recording using Digital Oscilloscope

Figure 4.32 Photograph showing use of MOV during Neutral Current measurement on HV winding using high impulse voltage

Figure 4.33 Applied impulse voltage waveform

Figure 4.34(a) Neutral Current waveform with out disc fault in HV winding

Figure 4.34(b) Neutral Current waveform with 2 – 4 disc fault in HV winding

Figure 4.34(c) Neutral Current waveform with 2 – 6 disc fault in HV winding

Figure 4.34(d) Neutral Current waveform with 2 – 8 disc fault in HV winding

Figure 4.34(e) Neutral Current waveform with 2 – 10 disc fault in HV winding

Figure 4.34(f) Neutral Current waveform with 2 – 12 disc fault in HV winding

Figure 4.34(g) Neutral Current waveform with 2 – 14 disc fault in HV winding

Figure 4.34(h) Neutral Current waveform with 2 – 16 disc fault in HV winding

Figure 4.34(i) Neutral Current waveform with 4 – 6 disc fault in HV winding

Figure 4.34(j) Neutral Current waveform with 6 – 8 disc fault in HV winding

Figure 4.34(k) Neutral Current waveform with 8 – 10 disc fault in HV winding

Figure 4.34(l) Neutral Current waveform with 10 – 12 disc fault in HV winding

Figure 4.34(m) Neutral Current waveform with 12 – 14 disc fault in HV winding

Figure 4.34(n) Neutral Current waveform with 14 – 16 disc fault in HV winding
Figure 4.35(a) Neutral Current waveform without disc fault in tapping winding
Figure 4.35(b) Neutral Current waveform with 39 – 38 disc fault in tapping winding
Figure 4.35(c) Neutral Current waveform with 39 – 37 disc fault in tapping winding
Figure 4.35(d) Neutral Current waveform with 39 – 36 disc fault in tapping winding
Figure 4.35(e) Neutral Current waveform with 39 – 35 disc fault in tapping winding
Figure 4.35(f) Neutral Current waveform with 39 – 33 disc fault in tapping winding
Figure 4.35(g) Neutral Current waveform with 39 – 32 disc fault in tapping winding
Figure 4.35(h) Neutral Current waveform with 39 – 31 disc fault in tapping winding
Figure 4.35(i) Neutral Current waveform with 39 – 29 disc fault in tapping winding
Figure 4.35(j) Neutral Current waveform with 39 – 27 disc fault in tapping winding
Figure 4.35(k) Neutral Current waveform with 39 – 26 disc fault in tapping winding
Figure 4.35(l) Neutral Current waveform with 39 – 25 disc fault in tapping winding
Figure 4.35(m) Neutral Current waveform with 39 – 37 disc fault in tapping winding
Figure 4.35(n) Neutral Current waveform with 39 – 35 disc fault in tapping winding
Figure 4.35(o) Neutral Current waveform with 39 – 33 disc fault in tapping winding
Figure 4.35(p) Neutral Current waveform with 39 – 31 disc fault in tapping winding
Figure 4.35(q) Neutral Current waveform with 39 – 29 disc fault in tapping winding
Figure 4.35(r) Neutral Current waveform with 39 – 27 disc fault in tapping winding
Figure 4.35(s) Neutral Current waveform with 39 – 25 disc fault in tapping winding
Figure 4.35(t) Neutral Current waveform with 39 – 23 disc fault in tapping winding
Figure 4.35(u) Neutral Current waveform with 39 – 22 disc fault in tapping winding
Figure 4.35(v) Neutral Current waveform with 39 – 16 disc fault in tapping winding
Figure 4.35(w) Neutral Current waveform with 39 – 8 disc fault in tapping winding
Figure 4.35(x) Neutral Current waveform with 39 – 5 disc fault in tapping winding
Figure 4.35(y) Neutral Current waveform with 39 – 3 disc fault in tapping winding
Figure 4.35(z) Neutral Current waveform with 38 – 33 disc fault in tapping winding
Figure 4.35(aa) Neutral Current waveform with 38 – 32 disc fault in tapping winding
Figure 4.35(ab) Neutral Current waveform with 38 – 27 disc fault in tapping winding
Figure 4.35(ac) Neutral Current waveform with 38 – 22 disc fault in tapping winding
Figure 4.35(ad) Neutral Current waveform with 38 – 16 disc fault in tapping winding
Figure 4.35(ae) Neutral Current waveform with 38 – 8 disc fault in tapping winding
Figure. 4.35(af) Neutral Current waveform with 8 – 3 disc fault in tapping winding
Figure. 4.35(ag) Neutral Current waveform with 39 – 2 disc fault in tapping winding
Figure. 4.36(a) Neutral Current waveform with 1 – 2 turn fault in 40th disc of tapping winding
Figure. 4.36(b) Neutral Current waveform with 1 – 3 turn fault in 40th disc of tapping winding
Figure. 4.36(c) Neutral Current waveform with 1 – 4 turn fault in 40th disc of tapping winding
Figure. 4.36(d) Neutral Current waveform with 1 – 2 turn fault in 37th disc of tapping winding
Figure. 4.36(e) Neutral Current waveform with 1 – 2 turn fault in 33rd disc of tapping winding
Figure. 4.36(f) Neutral Current waveform with 1 – 2 turn fault in 29th disc of tapping winding
Figure. 4.36(g) Neutral Current waveform with 1 – 2 turn fault in 25th disc of tapping winding
Figure. 4.36(h) Neutral Current waveform with 1 – 2 turn fault in 21st disc of tapping winding
Figure. 4.36(i) Neutral Current waveform with 1 – 2 turn fault in 17th disc of tapping winding
Figure. 4.36(j) Neutral Current waveform with 1 – 2 turn fault in 13th disc of tapping winding
Figure. 4.36(k) Neutral Current waveform with 1 – 2 turn fault in 9th disc of tapping winding
Figure. 4.36(l) Neutral Current waveform with 1 – 2 turn fault in 5th disc of tapping winding
Figure. 4.37(a) FFT of Neutral Current waveform with out disc fault in HV winding
Figure. 4.37(b) FFT of Neutral Current waveform with 2 – 4 disc fault in HV winding
Figure. 4.37(c) FFT of Neutral Current waveform with 2 – 6 disc fault in HV winding
Figure. 4.37(d) FFT of Neutral Current waveform with 2 – 8 disc fault in HV winding
Figure. 4.37(e) FFT of Neutral Current waveform with 2 – 10 disc fault in HV winding
Figure. 4.37(f) FFT of Neutral Current waveform with 2 – 12 disc fault in HV winding
Figure. 4.37(g) FFT of Neutral Current waveform with 2 – 14 disc fault in HV winding
Figure. 4.37(h) FFT of Neutral Current waveform with 2 – 16 disc fault in HV winding
Figure. 4.37(i) FFT of Neutral Current waveform with 4 – 6 disc fault in HV winding
Figure 4.37(j) FFT of Neutral Current waveform with 6 – 8 disc fault in HV winding
Figure 4.37(k) FFT of Neutral Current waveform with 8 – 10 disc fault in HV winding
Figure 4.37(l) FFT of Neutral Current waveform with 10 – 12 disc fault in HV winding
Figure 4.37(m) FFT of Neutral Current waveform with 12 – 14 disc fault in HV winding
Figure 4.37(n) FFT of Neutral Current waveform with 14 – 16 disc fault in HV winding
Figure 4.38(a) FFT of Neutral Current waveform without disc fault in tapping winding
Figure 4.38(b) FFT of Neutral Current waveform with 39 – 38 disc fault in tapping winding
Figure 4.38(c) FFT of Neutral Current waveform with 39 – 37 disc fault in tapping winding
Figure 4.38(d) FFT of Neutral Current waveform with 39 – 36 disc fault in tapping winding
Figure 4.38(e) FFT of Neutral Current waveform with 39 – 35 disc fault in tapping winding
Figure 4.38(f) FFT of Neutral Current waveform with 39 – 33 disc fault in tapping winding
Figure 4.38(g) FFT of Neutral Current waveform with 39 – 32 disc fault in tapping winding
Figure 4.38(h) FFT of Neutral Current waveform with 39 – 31 disc fault in tapping winding
Figure 4.38(i) FFT of Neutral Current waveform with 39 – 29 disc fault in tapping winding
Figure 4.38(j) FFT of Neutral Current waveform with 39 – 27 disc fault in tapping winding
Figure 4.38(k) FFT of Neutral Current waveform with 39 – 26 disc fault in tapping winding
Figure 4.38(l) FFT of Neutral Current waveform with 39 – 25 disc fault in tapping winding
Figure 4.38(m) FFT of Neutral Current waveform with 39 – 37 disc fault in tapping winding
Figure 4.38(n) FFT of Neutral Current waveform with 35 – 33 disc fault in tapping winding
Figure 4.38(o) FFT of Neutral Current waveform with 33 – 31 disc fault in tapping winding
Figure 4.38(p) FFT of Neutral Current waveform with 31 – 29 disc fault in tapping winding

xxix
Figure. 4.38(q) FFT of Neutral Current waveform with 29 – 27 disc fault in tapping winding

Figure. 4.38(r) FFT of Neutral Current waveform with 27 – 25 disc fault in tapping winding

Figure. 4.38(s) FFT of Neutral Current waveform with 25 – 23 disc fault in tapping winding

Figure. 4.38(t) Neutral Current waveform with 23 – 21 disc fault in tapping winding

Figure. 4.38(u) FFT of Neutral Current waveform with 21 – 19 disc fault in tapping winding

Figure. 4.38(v) FFT of Neutral Current waveform with 15 – 13 disc fault in tapping winding

Figure. 4.38(w) FFT of Neutral Current waveform with 9 – 7 disc fault in tapping winding

Figure. 4.38(x) FFT of Neutral Current waveform with 7 – 5 disc fault in tapping winding

Figure. 4.38(y) FFT of Neutral Current waveform with 5 – 3 disc fault in tapping winding

Figure. 4.38(z) FFT of Neutral Current waveform with 38 – 33 disc fault in tapping winding

Figure. 4.38(aa) FFT of Neutral Current waveform with 32 – 27 disc fault in tapping winding

Figure. 4.38(ab) FFT of Neutral Current waveform with 27 – 22 disc fault in tapping winding

Figure. 4.38(ac) FFT of Neutral Current waveform with 21 – 16 disc fault in tapping winding

Figure. 4.38(ad) FFT of Neutral Current waveform with 13 – 8 disc fault in tapping winding

Figure. 4.38(ae) FFT of Neutral Current waveform with 8 – 3 disc fault in tapping winding

Figure. 4.39(a) FFT of Neutral Current waveform with 32 – 2 disc fault in tapping winding

Figure. 4.39(b) FFT of Neutral Current waveform with 1 – 3 turn fault in 40th disc of tapping winding

Figure. 4.39(c) FFT of Neutral Current waveform with 1 – 4 turn fault in 40th disc of tapping winding

Figure. 4.39(d) FFT of Neutral Current waveform with 1 – 2 turn fault in 37th disc of tapping winding

Figure. 4.39(e) FFT of Neutral Current waveform with 1 – 2 turn fault in 33rd disc of tapping winding

Figure. 4.39(f) FFT of Neutral Current waveform with 1 – 2 turn fault in 29th disc of tapping winding
Figure. 4.39(g) FFT of Neutral Current waveform with 1 – 2 turn fault in 25th disc of tapping winding 342
Figure. 4.39(h) FFT of Neutral Current waveform with 1 – 2 turn fault in 21st disc of tapping winding 343
Figure. 4.39(i) FFT of Neutral Current waveform with 1 – 2 turn fault in 17th disc of tapping winding 343
Figure. 4.39(j) FFT of Neutral Current waveform with 1 – 2 turn fault in 13th disc of tapping winding 343
Figure. 4.39(k) FFT of Neutral Current waveform with 1 – 2 turn fault in 9th disc of tapping winding 343
Figure. 4.39(l) FFT of Neutral Current waveform with 1 – 2 turn fault in 5th disc of tapping winding 343
Figure. 4.40(a) Wavelet transform of Neutral Current waveform with out disc fault in HV winding 345
Figure. 4.40(b) Wavelet transform of Neutral Current waveform with 2 – 4 disc fault in HV winding 345
Figure. 4.40(c) Wavelet transform of Neutral Current waveform with 2 – 6 disc fault in HV winding 346
Figure. 4.40(d) Wavelet transform of Neutral Current waveform with 2 – 8 disc fault in HV winding 346
Figure. 4.40(e) Wavelet transform of Neutral Current waveform with 2 – 10 disc fault in HV winding 347
Figure. 4.40(f) Wavelet transform of Neutral Current waveform with 2 – 12 disc fault in HV winding 347
Figure. 4.40(g) Wavelet transform of Neutral Current waveform with 2 – 14 disc fault in HV winding 348
Figure. 4.40(h) Wavelet transform of Neutral Current waveform with 2 – 16 disc fault in HV winding 348
Figure. 4.40(i) Wavelet transform of Neutral Current waveform with 4 – 6 disc fault in HV winding 349
Figure. 4.40(j) Wavelet transform of Neutral Current waveform with 6 – 8 disc fault in HV winding 349
Figure. 4.40(k) Wavelet transform of Neutral Current waveform with 8 – 10 disc fault in HV winding 350
Figure. 4.40(l) Wavelet transform of Neutral Current waveform with 10 – 12 disc fault in HV winding 350
Figure. 4.40(m) Wavelet transform of Neutral Current waveform with 12–14 disc fault in HV winding

Figure. 4.40(n) Wavelet transform of Neutral Current waveform with 14–16 disc fault in HV winding

Figure. 4.41(a) Wavelet transform of Neutral Current waveform without disc fault in tapping winding

Figure. 4.41(b) Wavelet transform of Neutral Current waveform with 39–38 disc fault in tapping winding

Figure. 4.41(c) Wavelet transform of Neutral Current waveform with 39–37 disc fault in tapping winding

Figure. 4.41(d) Wavelet transform of Neutral Current waveform with 39–36 disc fault in tapping winding

Figure. 4.41(e) Wavelet transform of Neutral Current waveform with 39–35 disc fault in tapping winding

Figure. 4.41(f) Wavelet transform of Neutral Current waveform with 39–33 disc fault in tapping winding

Figure. 4.41(g) Wavelet transform of Neutral Current waveform with 39–32 disc fault in tapping winding

Figure. 4.41(h) Wavelet transform of Neutral Current waveform with 39–31 disc fault in tapping winding

Figure. 4.41(i) Wavelet transform of Neutral Current waveform with 39–29 disc fault in tapping winding

Figure. 4.41(j) Wavelet transform of Neutral Current waveform with 39–27 disc fault in tapping winding

Figure. 4.41(k) Wavelet transform of Neutral Current waveform with 39–26 disc fault in tapping winding

Figure. 4.41(l) Wavelet transform of Neutral Current waveform with 39–25 disc fault in tapping winding

Figure. 4.41(m) Wavelet transform of Neutral Current waveform with 39–37 disc fault in tapping winding

Figure. 4.41(n) Wavelet transform of Neutral Current waveform with 35–33 disc fault in tapping winding

Figure. 4.41(o) Wavelet transform of Neutral Current waveform with 33–31 disc fault in tapping winding

Figure. 4.41(p) Wavelet transform of Neutral Current waveform with 31–29 disc fault in tapping winding
Figure 4.41(q) Wavelet transform of Neutral Current waveform with 29 – 27 disc fault in tapping winding

Figure 4.41(s) Wavelet transform of Neutral Current waveform with 25 – 23 disc fault in tapping winding

Figure 4.41(t) Neutral Current waveform with 23 – 21 disc fault in tapping winding

Figure 4.41(u) Wavelet transform of Neutral Current waveform with 21 – 19 disc fault in tapping winding

Figure 4.41(v) Wavelet transform of Neutral Current waveform with 15 – 13 disc fault in tapping winding

Figure 4.41(w) Wavelet transform of Neutral Current waveform with 9 – 7 disc fault in tapping winding

Figure 4.41(x) Wavelet transform of Neutral Current waveform with 7 – 5 disc fault in tapping winding

Figure 4.41(y) Wavelet transform of Neutral Current waveform with 5 – 3 disc fault in tapping winding

Figure 4.41(z) Wavelet transform of Neutral Current waveform with 38 – 33 disc fault in tapping winding

Figure 4.41(aa) Wavelet transform of Neutral Current waveform with 32 – 27 disc fault in tapping winding

Figure 4.41(ab) Wavelet transform of Neutral Current waveform with 27 – 22 disc fault in tapping winding

Figure 4.41(ac) Wavelet transform of Neutral Current waveform with 21 – 16 disc fault in tapping winding

Figure 4.41(ad) Wavelet transform of Neutral Current waveform with 13 – 8 disc fault in tapping winding

Figure 4.41(ae) Wavelet transform of Neutral Current waveform with 8 – 3 disc fault in tapping winding

Figure 4.42(a) Wavelet transform of Neutral Current waveform with 32 – 2 disc fault in tapping winding

Figure 4.42(b) Wavelet transform of Neutral Current waveform with 1 – 3 turn fault in 40th disc of tapping winding

Figure 4.42(c) Wavelet transform of Neutral Current waveform with 1 – 4 turn fault in 40th disc of tapping winding

Figure 4.42(d) Wavelet transform of Neutral Current waveform with 1 – 2 turn fault in 37th disc of tapping winding

Figure 4.42(e) Wavelet transform of Neutral Current waveform with 1 – 2 turn fault in 33rd disc of tapping winding
Figure 4.42(f) Wavelet transform of Neutral Current waveform with 1 – 2 turn fault in 29th disc of tapping winding 370
Figure 4.42(g) Wavelet transform of Neutral Current waveform with 1 – 2 turn fault in 25th disc of tapping winding 370
Figure 4.42(h) Wavelet transform of Neutral Current waveform with 1 – 2 turn fault in 21st disc of tapping winding 371
Figure 4.42(i) Wavelet transform of Neutral Current waveform with 1 – 2 turn fault in 17th disc of tapping winding 371
Figure 4.42(j) Wavelet transform of Neutral Current waveform with 1 – 2 turn fault in 13th disc of tapping winding 372
Figure 4.42(k) Wavelet transform of Neutral Current waveform with 1 – 2 turn fault in 9th disc of tapping winding 372
Figure 4.42(l) Wavelet transform of Neutral Current waveform with 1 – 2 turn fault in 5th disc of tapping winding 373