List of Figures

2.1 Higher order antibunching can be seen in Generalized binomial state. Existence of 8th and 9th order antibunching (for $\alpha = 2$ and $\beta = 1$) and variation of depth of nonclassicality with N has been shown. ... 47
2.2 Variation of $d_{GBS}(2)$ with α and N for $\beta=1$. 48
2.3 Variation of $d_{GBS}(2)$ with β and N for $\alpha=10$. 48
2.4 Variation of $d_{RBS}(8)$ and $d_{RBS}(9)$ with photon number N. 50
2.5 Variation of $d_{NBS}(8)$ with η and M. 50
2.6 Variation of $d_{NBS}(8)$ with η for $M = 10$. 51
2.7 Variation of $d_{GS}(8)$, $d_{GS}(9)$ and $d_{GS}(10)$ with respect to η. 52
2.8 Variation of $d_{PACS}(4)$ with α and m. 52
2.9 Variation of $10d_{PACS}(3)$ and $d_{PACS}(4)$ with α for $m = 15$, the solid line denotes $d_{PACS}(3)$ and the dashed line denotes $d_{PACS}(4)$ to show the variation in the same scale $d_{PACS}(3)$ is multiplied by 10. The plot shows that depth of nonclassicality of $d_{PACS}(4)$ is always greater than that of $d_{PACS}(3)$ which is consistent with the properties of HOA ... 54
2.10 Variation of $d_{HS}(8)$ with η and M, when lowest allowed values of L have been chosen at every point. ... 54
2.11 Comparison of single photon generation probability of Binomial State with Generalized Binomial state (GBS) and Hypergeometric State (HS). ... 67
2.12 Schematic of the experimental setup for the homodyne detection of the light produced from the intermediate state (IS); ϕ is the phase of the local oscillator (LO) relative to the IS; BS is lossless beam splitter; D is detector; α, α_l and β_i correspond to the annihilation operators for the IS, LO and the output of the BS respectively.

4.1 Signature of HOA and HOSPS in Binomial state for $M = 20$. 83
4.2 Signature of Hong Mandel Squeezing in Binomial State for $M = 50$. 84
4.3 Signature of HOA and HOSPS in NLESS. 87
4.4 NLVSS shows superpoissonian characteristics. 87
4.5 NLVSS shows superpoissonian characteristics. 88
4.6 NLVSS shows superpoissonian characteristics. 88
4.7 NLVSS shows superpoissonian characteristics. 88
4.8 Shows 5th order HOA and HOSPS in GBS. Values of N, beyond which $d(5)$ and $d_h(5)$ terminated are 13.05 and 13.35 respectively. 90
4.9 Shows 4th order and 6th order HOS with α in GBS. 90
4.10 Shows 4th order and 6th order HOS with Beta in GBS. Possibility of HOS is high for large values of β and cannot have any upper limit. 91
4.11 Shows 5th order HOA and HOSPS in NBS for M=20. 92
4.12 Higher order squeezing can be observed in NBS for M=20 and lies beyond $p=0.5$ only. 93
4.13 Shows 5th order HOA and HOSPS in PACS for $\alpha = 0.4$. 94
4.14 Higher order squeezing in PACS. 94
4.15 Shows 5th order HOA and HOSPS in HS. 96
4.16 Shows 4th order and 6th order HOS in HS. 96

5.1 Variation of quantum phase fluctuation of binomial state. 105
LIST OF FIGURES

5.2 Variation of quantum phase fluctuation with respect to α and β
for Roy and Roy generalized binomial state. 106
5.3 Variation of quantum phase fluctuation of photon added coherent
state. ... 108
5.4 Variation of quantum phase fluctuation of negative binomial state.110
5.5 Variation of quantum phase fluctuation of hyper geometric state. 110
6.1 Schematic of the setup for homodyne detection of HOA, HOSPS
and HOS. ... 120