DD Optic Disk Diameter
DIARETDB0 Diabetic Retinopathy Database 0
DIARETDB1 Diabetic Retinopathy Database 1
DRIVE Digital Retinal Images for Vessel Extraction
ETDRS Early Treatment Diabetic Retinopathy Study
FCM Fuzzy C-Means
FN False Negative
FP False Positive
GVF Gradient Vector Flow
HCT Histogram Compression and Translation
HMLRE Histogram Matched Local Relative Entropy
HSV Hue Saturation Value
KNN K-Nearest Neighbor
MESSIDOR Methodes d'Evaluation de Systèmes de Segmentation et d'Indexation Dédiées à l'Ophtalmologie Rétnienne
MLTH Multiple Linear Top-Hats
PCA Principal Component Analysis
ROC Receiver Operating Characteristic
STARE Structured Analysis of the Retina
SVM Support Vector Machines
SWFCM Spatially Weighted Fuzzy C-Means
TN True Negative
TP True Positive

LIST OF FIGURES
1.1 A Cross Section of the Human Eye

1.2 A Typical Retinal Image from the Left Eye Showing Retinal Vasculature, Optic Disk, Macula and Fovea

1.3 Effect of Diabetic Retinopathy on Vision (a) Without Retinopathy (b) With Retinopathy

1.4 Abnormal Diabetic Retinopathy Images (a) An Image Containing Microaneurysms and Hemorrhages (b) Diabetic Retinopathy with Retinal Exudates in Macula Region (c) Diabetic Retinopathy with Cottonwool Spots

1.5 Fundus Image Analysis System

3.1 Challenges in Extraction of Retinal Vasculature having Severe Pathology from STARE Database. Arrows drawn on the image in black dashed lines show lesions and the boundary of the optic disc., Arrows drawn in white lines highlight narrow blood vessels in low-contrast regions

3.2 Flow Chart of the proposed HMLRE Method

3.3 (a) Healthy Colour Retinal Image (b) Colour Retinal Image with Severe Pathology (c) & (d) Red Channel Images (e) & (f) Green Channel Images (g) & (h) Blue Channel Images

3.4 Fundus Image Preprocessing to Decrease the Contrast between Abnormalities and the Retinal Background (a) Red Channel of a Fundus Image; (b) Green Channel of the Same Image; (c) Histogram Matched Image; Gray-Level Distributions of the Same Fundus Image (d) Red Channel; (e) Green Channel; and (f) Histogram Matched Image

3.5 Fundus Image Preprocessing to Decrease the Contrast between Abnormalities and the Retinal Background (a) Red Channel of a Fundus Image; (b) Green Channel of the Same Image; (c) Histogram Matched Image; Gray-Level Distributions of the Same Fundus Image (d) Red Channel; (e) Green Channel; and (f) Histogram Matched Image
Matched Image

3.6 Results after Convolving Matched Filter Kernels at Different Angles with Green Channel of the Histogram Matched Image Shown in Fig. 3.5 (c)

3.7 (a) Matched Filter Response of the Histogram Matched Image (b) Result after Local Relative Entropy Thresholding with HCT (c) Label Filtering Result

3.8 Quadrants of Co-occurrence Matrix

3.9 Comparison of Results on a Retinal Image having Severe Pathology shown in Fig. 3.1

3.10 Results Produced by the proposed HMLRE Method and Manual Segmentations (Sets A and B) for an Image from the DRIVE Database. (a) Normal Retinal Images. (b) Segmentation Results of HMLRE Method. (c) Set A (d) Set B

3.11 Results produced by the proposed HMLRE Method and Manual Segmentations (Sets A and B) for an Image from the DRIVE Database. (a) Normal Retinal Images. (b) Segmentation Results of HMLRE Method. (c) Set A (d) Set B

3.12 Results produced by the proposed HMLRE Method for Images from the STARE Database. First Row: Example Images; Second Row: Hand-Labeled Groundtruth; Third Row: Results of Hoover et al.; Fourth Row: Results of Chanwimaluang et al.; Fifth Row: Results of HMLRE Method

3.13 (a) ROC Curve for Classification on the DRIVE Database. The point marked as ‘□’ corresponds to set B, the second set of manual segmentations. The HMLRE Method has $A_z = 0.9518$. (b) ROC Curve for Classification on the STARE Database. The point marked as ‘□’ corresponds to set B, the second set of manual segmentations. The HMLRE Method has $A_z = 0.9602$

4.1 Training Images for Localization of Optic Disk
4.2 Average Vector of the Training Set

4.3 Examples of Eigen Disk Images

4.4 Localization of Optic Disk (a) Original Colour Retina Image (b) The Binary Vessel Map (c) Overlay of the Vessel Branch Network and the Original Image and (d) The Bounding Box of the Best Branch and the Determination of the Optic Disk Center

4.5 Detected Optic Disk Center

4.6 Boundary Detection of Optic Disk (a) Colour Retina Image (b) Located Optic Disk (c) Result after Applying Colour Morphology in Lab Space (d) Initial Snake (e) Detected Optic Disk Boundary and (f) Overlay of the Groundtruth and the Result of proposed Method

4.7 Comparison of Optic Disk Localization. ‘+’ indicates the localization by the method of finding the branch with most vessels, ‘□’ indicates the localization of optic disk by principal components analysis method and ‘Δ’ represents the localization by the centroid of the largest cluster of the brightest pixels

4.8 First Row: Example Images with Closer View of Optic Disk; Second Row: Results from GVF Snake; Third Row: Results from Hough Transform; Last row: Results from proposed Method

5.1 Segementation of Blood Vessels. (a)&(b) Colour Fundus Images (c)&(d) Extracted Vessel Network using the HMLRE Method Proposed in Chapter 3

5.2 Detected Optic Disk Locations for the Images Shown in Fig.5.1

5.3 Coordinate System used to Illustrate the Horizontal Raphe of the Fundus

5.4 Example Result of Parabola Fitting on Image in Fig.5.1(a)
5.5 The Approach used for Detecting Candidate Fovea Region

5.6 Examples of Fovea and Macula Region Localization on a Left Eye in (a) and a Right Eye in (b).

5.7 Polar Fundal Coordinate System Centred on Fovea according to ETDRS Report Number-10.

5.8 Successful Detection of Macula and Fovea. (a) Normal Retinal Image (b), (c) and (d) Retinal Images containing pathologies and (e) Bad Illuminated Retinal Image

5.9 Failure Case of Proposed Approach. A Retinal Image from STARE Database with a central retinal vein occlusion, characterized by diffuse retinal hemorrhages, optic nerve swelling, and erythema

6.1 Flow Chart of the Proposed Method

6.2 (a) & (b) Colour Retinal Images with Exudates; (c) & (d) Contrast Enhanced Retinal Images

6.3 Eliminated Optic Disk Regions of Fig. 6.2(a) & (b)

6.4 Flowchart of SWFCM Clustering

6.5 (a) & (b) Detected Bright Lesions for the Images shown in Figs. 6.2(a) & (b); (c) & (d) Overlay of Detected Bright Lesions on Colour Retinal Images

6.6 (a) & (b) Detected Bright Lesions after SVM Classification for the Images in Figs. 6.2(a) & (b); (c) & (d) Overlay of True Bright Lesions on Colour Retinal Images

6.7 Receiver Operator Characteristic (ROC)

6.8 Results of Bright Lesion Detection (a) Left Eye and (b) Right Eye
6.9 Results Produced by the Proposed SWFCM Clustering Method and Manual Segmentations for Two Images from STARE Database. Top Row Results Originate from a Normal Case, while the Bottom Row Results Originate from an Image having Pathology. (a) Retinal Images. (b) First Observer (c) Segmentation Results of Hoover et al. (d) Segmentation Results of Proposed SWFCM Clustering Method

6.10 (a) Retinal Image from the DRIVE database (b) Manual Segmentations from Set A (c) Manual Segmentations from Set B (d) Segmentation Results of SWFCM Clustering Method

6.11 (a) ROC Curve for Classification on the DRIVE Database. The point marked as ‘□’ corresponds to set B, the second set of manual segmentations. The proposed Method has $A_z = 0.9418$. (b) ROC Curve for Classification on the STARE Database. The point marked as ‘□’ corresponds to set B, the second set of manual segmentations. The Proposed Method has $A_z = 0.9505$

7.1 (a) and (b) Colour Retinal Images; (c) and (d) Green Channels of these Images; (e) and (f) Contrast Enhanced Images

7.2 (a) Pixels having Positive Value are Set to Zero to Remove the Bright Lesions in the Fundus Image. (b) Thresholded Image

7.3 (a) Detected Candidate Dark Lesions using Morphology Based Method (b) Overlay of Candidate Dark Lesions on Colour Fundus Image

7.4 (a) Green Channel View of a Dark Lesion. The pixels belonging to the lesion are darker than the background. (b) Profile of the Center of a Dark Lesion

7.5 (a) Matched Filtering Result for the Image Shown in Fig.7.1(c); (b) Relative Local Entropy Thresholding Result
7.6 (a) Result after Label Filtering and Removal of the Large Blood Vessels. (b) Candidate Dark Lesions overlaid on Colour Retinal Image.

7.7 (a) Contrast Enhanced Colour Retinal Image of Fig.7.1(a), (b) Detected Dark Lesions (c) Blurred Groundtruth Containing Microaneurysms (d) Blurred Groundtruth Containing Hemorrhages

7.8 (a) Contrast Enhanced Colour Retinal Image of Fig.7.1(b), (b) Detected Dark Lesions (c) Blurred Groundtruth Containing Microaneurysms (d) Blurred Groundtruth Containing Hemorrhages

7.9 ROC Curve of the Proposed Hybrid Dark Lesion Detection Method using SVM and KNN Classifiers

8.1 Results of Fundus Image Analysis System on an Image from DIARETDB1 Database (a) Detected Bright Lesions with Established Fundal Coordinate System (b) Detected Dark Lesions with Established Fundal Coordinate System

LIST OF TABLES

3.1 Results for Different Blood Vessel Extraction Methods and a Second Human Observer 66

4.1 Performance Comparison of Maximum Local 88