CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iii

CONTENTS vii

ABBREVIATIONS xii

LIST OF FIGURES xiii

LIST OF TABLES xix

1 INTRODUCTION 1

1.1 Anatomy of the Eye 3
1.2 Diabetic Retinopathy 5
1.3 Screening for Diabetic Retinopathy 9
1.4 Aims and Objectives 11
1.5 Fundus Image Analysis System 12
1.6 Organization of the Thesis 14

2 LITERATURE REVIEW 17

2.1 Review of Retinal Blood Vessel Segmentation 18

2.1.1 Matched Filters 18
2.1.2 Tracking Methods 19
2.1.3 Morphological Processing 20
2.1.4 Region Growing Approaches 20
2.1.5 Multiscale Approaches 21
2.1.6 Supervised Methods 22
2.1.7 Adaptive Thresholding Methods 23
2.2 Localization and Contour Detection of Optic Disk 24
 2.2.1 Localization of Optic Disk 25
 2.2.2 Contour Detection of Optic Disk 27
2.3 Detection of Fovea 29
2.4 Bright Lesion Detection 30
2.5 Dark Lesion Detection 35

3 SEGMENTATION OF VASCULATURE FROM DIGITAL FUNDUS IMAGES 39
 3.1 Proposed Algorithm 41
 3.2 Implementation Details 44
 3.2.1 Histogram Matching 44
 3.2.2 Matched Filter 46
 3.2.3 Local Relative Entropy Thresholding with Histogram Compression and Translation 50
 3.2.4 Label Filtering 57
 3.3 Experimental Results and Discussion 58
 3.4 Conclusions 67

4 LOCALIZATION AND CONTOUR DETECTION OF OPTIC DISK 70
 4.1 Localization of Optic Disk 71
 4.1.1 Principal Component Analysis 71
 4.1.2 Localization of Optic Disk Based on Finding the Branch with the Most Vessels 76
 4.2 Contour Detection of Optic Disk 79
 4.2.1 Homogenization of Optic Disk Region 80
 4.2.2 Contour Detection Using Geometric Active Contour 81
Model

4.3 Experimental Results and Discussion

4.3.1 Localization of Optic Disk

4.3.2 Contour Detection of Optic Disk

4.4 Conclusions

5 Localization of Fovea in Digital Fundus Images

5.1 Proposed Approach

5.1.1 Segmentation of Vascular Tree

5.1.2 Localization of Optic Disk

5.1.3 Detection of Vascular Arcade and Horizontal Raphe

5.1.4 Detection of Macula and Fovea

5.1.5 Establishment of Foveal Coordinate System

5.2 Experimental Results

5.3 Conclusions

6 Detection of Bright Lesions in Digital Fundus Images

6.1 SWFCM Clustering Based Bright Lesion Detection

6.1.1 Preprocessing and Contrast Enhancement

6.1.2 Optic Disc Elimination

6.1.3 Segmentation of Candidate Bright Lesions

6.2 Classification of Bright Lesions from Bright Non-Lesions

6.2.1 Extracted Features

6.2.2 Classifiers

6.2.2.1 KNN Classifier

6.2.2.2 Support Vector Machine Classifier
6.3 Segmentation of Blood Vessels Using SWFCM Clustering 121
6.4 Experimental Results and Discussion 122
 6.4.1 Bright Lesion Detection 123
 6.4.2 Segmentation of Blood Vessels 126
6.5 Conclusions 129

7 DETECTION OF DARK LESIONS IN DIGITAL FUNDUS IMAGES 133

7.1 Preprocessing 135
7.2 Candidate Dark Lesion Detection System 138
 7.2.1 Mathematical Morphology Based Method 138
 7.2.2 Candidate Dark Lesion Detection Based on Matched Filtering and Local Relative Entropy Thresholding 140
 7.2.2.1 Matched Filtering 141
 7.2.2.2 Thresholding Based on Local Relative Entropy 142
 7.2.3 Hybrid Dark Lesion Detection Method 143
7.3 Classification of Dark Lesions from Dark Non-Lesions 145
7.4 Experimental Results and Discussion 147
7.5 Conclusions 152

8 EVALUATION OF FUNDUS IMAGE ANALYSIS SYSTEM 155

8.1 Fundus Image Analysis System 157
 8.1.1. Grading Diabetic Retinopathy 158
 8.1.2. Grading Macular Edema 158
8.2 Experimental Results and Discussion 159
8.3 Conclusions 163
9 CONCLUSIONS AND FUTURE WORK 164

9.1 Future Work 168

PUBLICATIONS OF THE AUTHOR 171

REFERENCES 175

ABBREVIATIONS

CAD Computer Aided Diagnosis