CONTENTS

1. ABBREVIATIONS

2. ABSTRACT OF THE THESIS

3. INTRODUCTION (WITH REVIEW OF LITERATURE)
 3.1 Cancer progression
 3.2 Osteopontin (OPN)
 3.2.1 Structure of OPN
 3.2.2 Cellular distribution of OPN
 3.2.3 Role of OPN in human pathology
 3.3 Role of OPN in tumor progression and metastasis
 3.4 Integrins: versatile integrators in cell signaling
 3.5 Role of integrins in tumor progression
 3.6 The αvβ3 integrin as target for cancer therapy
 3.7 MelCAM: structure, regulation and functions
 3.7.1 Role of MelCAM in tumor progression
 3.8 Focal adhesion kinase: structure, regulation and functions
 3.9 Nuclear factor inducing kinase: structure and regulation
 3.10 Role of MAPK in cell signaling and cancer progression
 3.11 NFκB transcription factor
 3.11.1 Role of NFκB in oncogenic transformation and tumorigenesis
 3.12 AP-1 transcription factor: structure, functions and regulation
 3.12.1 Role of AP-1 in tumorigenesis
3.13 Urokinase plasminogen activator: structure, functions and regulation

3.14 Matrix metalloproteinases

3.14.1 Structure of MMP

3.14.2 Regulation of MMP

3.15 MMP-9: structure, regulation and functions

3.15.1 MMP-9: Role in tumor invasion and metastasis

4. AIMS AND OBJECTIVES OF THE STUDY

5. MATERIALS AND METHODS

5.1 Source of chemicals

5.2 Maintenance of cell line

5.3 Trypan blue exclusion test for cell viability

5.4 Purification and characterization of osteopontin (OPN) from human milk

5.5 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis

5.6 Immunoprecipitation

5.7 Zymography for detection of MMP-9 activity

5.8 Cell migration assay

5.9 Extracellular matrix invasion assay

5.10 Mammalian cell transfection

5.11 Nuclear factor inducing kinase (NIK) assay

5.12 IKK assay

5.13 JNK kinase assay
5.14 ERK kinase assay
5.15 NIK coupled kinase assay
5.16 Preparation of nuclear and cytoplasmic extracts
5.17 Electrophoretic mobility shift assay
5.18 NFκB and AP-1 luciferase reporter gene assay
5.19 Immunofluorescence assay
5.20 Three dimensional spheroid culture
5.21 In vivo tumorigenicity experiments
5.21.1 Preparation of lysates from tumor tissue
5.21.2 Preparation of nuclear extracts from tumor tissue
5.22 In vivo metastasis study
5.23 Clinical specimens for immunohistochemical studies
5.23.1 Paraffin embedding of tissue samples
5.23.2 Histopathological grading
5.23.3 Immunohistochemistry
5.24 Densitometric and statistical analysis

6. RESULTS AND DISCUSSION

6.1 Nuclear Factor Inducing Kinase - A key regulator in OPN-induced MAPK/IKK kinase dependent NFκB-mediated pro-MMP-9 activation

6.1.1 OPN induces αvβ3 integrin mediated NIK phosphorylation
6.1.2 OPN stimulates the interaction between phosphorylated NIK and IKKα/β
6.1.3 OPN induces NIK activity and NIK dependent IKK activity
6.1.4 NIK is involved in OPN induced IκBα phosphorylation and degradation

6.1.5 OPN stimulates αvβ3 integrin-mediated NIK dependent MEK1/ERK1/2 phosphorylations

6.1.6 OPN induces NIK/IKK mediated NFκB-DNA binding

6.1.7 ERK1/2 is involved in OPN-induced NIK mediated NFκB-DNA binding

6.1.8 OPN induces NIK dependent ERK/IKK-mediated NFκB transactivation

6.1.9 OPN stimulates αvβ3 integrin-mediated pro-MMP-9 activation

6.1.10 NIK is involved in OPN induced pro-MMP-9 activation

6.1.11 OPN induces NIK dependent IKK/ERK1/2-mediated uPA secretion

6.1.12 uPA is required for OPN induced pro-MMP-9 activation

6.1.13 MMP-9 plays crucial role in OPN-induced NIK dependent IKK/ERK1/2-mediated cell migration and chemoinvasion

6.1.14 Both MMP-2 and MMP-9 play independent roles in OPN-induced cell migration and chemoinvasion

6.1.15 OPN induces pro-MMP-9 activation in tumor of nude mice

6.1.16 Discussion

6.2 Differential role of JNK1 in regulating OPN-induced NIK/MEKK1-dependent AP-1 mediated pro-MMP-9 activation

6.2.1 OPN induces αvβ3 integrin dependent MEKK1 & JNK1 phosphorylations

6.2.2 MEKK1 but not NIK is required for OPN-induced JNK1
6.2.3 MEKK1 but not NIK enhances the OPN-induced JNK1 activity

6.2.4 JNK1 is involved in OPN-induced MEKK1-dependent ERK1/2 inactivation

6.2.5 Overexpression of MEKK1 does not affect the OPN-induced NIK dependent ERK activation

6.2.6 OPN induces NIK and MEKK1 dependent c-Jun expression

6.2.7 NIK and MEKK1 play important roles in OPN-induced AP-1-DNA binding

6.2.8 JNK1 is differentially involved in OPN-induced AP-1-DNA binding

6.2.9 OPN induces NIK/MEKK1 mediated AP-1 transactivation

6.2.10 OPN stimulates AP-1 dependent uPA secretion and MMP-9 activation

6.2.11 Roles of NIK, MEKK1 and JNK1 in OPN-induced uPA dependent MMP-9 activation

6.2.12 MEKK1, JNK1 and c-Jun play crucial roles in OPN-induced cell migration and chemoinvasion

6.2.13 OPN induces NIK/MEKK1-dependent c-Jun expression, uPA secretion and MMP-9 activation in tumor of nude mice

6.2.14 Discussion

6.3 MelCAM, a melanoma specific marker plays crucial role in OPN-induced melanoma progression

6.3.1 OPN stimulates NIK dependent MelCAM expression

6.3.2 OPN induces the interaction between MelCAM and αvβ3 integrin

6.3.3 OPN enhances FAK dependent NIK activation
6.3.4 OPN regulates a bidirectional signaling between FAK and MelCAM

6.3.5 OPN induces FAK and NIK dependent Sp1 expression

6.3.6 FAK, NIK and MelCAM play crucial roles in OPN-induced Sp1-DNA binding; OPN-stimulated Sp1 expression is dependent on AP-1 activation

6.3.7 OPN induces FAK dependent Sp1-mediated MelCAM expression

6.3.8 MelCAM is required for OPN-induced uPA secretion and MMP-9 activation

6.3.9 Roles of FAK, Sp1 and MelCAM in OPN-stimulated cell motility

6.3.10 Roles of NIK and MelCAM in OPN-induced homotypic aggregation

6.3.11 OPN induces NIK dependent MelCAM expression in tumor of nude mice

6.3.12 Role of NIK in OPN induced melanoma metastasis to lungs

6.3.13 Expression of OPN, pNIK and MelCAM in human malignant melanoma specimens

6.3.14 Discussion

7. SUMMARY AND CONCLUSIONS

8. REFERENCES

9. APPENDIX