In this chapter, an attempt is made to review the studies conducted at different levels on development indicators. Many studies have been conducted at the national level, some at the state level and a few at the district or block level within the state. The studies are grouped accordingly and are presented here to highlight the indicators/variables used to measure development at different levels and the methodology followed for developing an index of development. As far as possible, the indicators identified and used to measure development are presented in the respective studies. It is hoped that this type of presentation and analysis will enable us to reach the micro level indicators of development, viz., at the village level. An attempt has also been made to review impact studies wherein the development variables are used to see their effect on other variables.

Several indicators on quality of life such as food and nutrition, education, health, conditions of work, housing facilities, social security have been identified in the United Nations study (1954). The United Nations has enlarged the list of indicators in their subsequent works.
Morris and Mc Alphin (1982) have attempted to develop the physical quality of life index (PQL1) with three indicators, viz., infant mortality, life expectancy at age one and basic literacy. This has been used for intra and international comparisons. The authors have used simple indexing method to combine all the three into a single index known as PQL1. It measures the combined effect of nutritional status, public health and educational facilities. However, it has been criticised that it did not capture the effect of family income. India's QL1 was 43 whereas it was the highest for USA (94). After the introduction of Human Development Index (HDI), the use of PQL1 has almost become extinct. The UNDP (1990) has attempted to measure human Development Index based on national income, life expectancy and educational attainment. It has defined human development, as the process of enabling people to have wider choices. It is the most widely accepted measure of human development (lack of development <r poverty). As a measure of development, this index has been calculated for the first time by the UNDP for 130 countries of the world in 1990. With some refinement, the human development index or 1994 has been calculated using life expectancy, adult literacy, mean years of schooling and income (adjusted for difference in purchasing power).
In 1971, India's HDI was 0.45 and its rank was 138th among 175 countries of the world. Canada had the highest HDI (0.96) and Sierra Leone, the lowest (0.18). In 1996, India's HDI was 0.44 and its rank was 135th among nations of the world (UNDP, 1996).

With three types of deprivation measures, UNDP (1997) has calculated the Human Poverty Index. The measures included are: survival deprivation as measured by the percentage of people not expected to survive to age 40 years, deprivation in education and knowledge as measured by the adult literacy rate, and deprivation in economic provisionality, such as: population without access to safe drinking water (per cent), population without access to health services (per cent), and underweight of children under the age of 5 years (per cent).

The Human Poverty Index is obtained as the cube root of the average of cubes of the 3 components of deprivation. Totally 78 poor countries have been used in this analysis. Among them, Trinidad and Tobago had the lowest HP at 4.1, and Niger had the highest, at 66.0. India's HDI was 36.7 and its rank was 47 among the poor countries in terms of poverty.
The development status of developing countries have been assessed using indicators such as per capita income (in $s.), adult literacy (per cent), life expectancy (years) and female pre-school enrolment rate (per cent). (World Bank, 1994).

An index of development has been constructed for measuring development for 1973, using human development indicators based on life expectancy, education, IME and communication based on television sets and radios for 38 developing countries (UNO, 1997). Countries have been grouped on the basis of their development status and, fertility and contraceptive measures are compared.

The UNDP (1993) has constructed a human development index using life expectancy, educational attainment, and adjusted real GDP per capita. This index has been criticized by Dastupta (1993), Sreenath (1994) and Srinivasan (1994). The rationale of the index is based on Sen's theory of well-being and advantage. The HDI of India was 0.43 and India was ranked 133 among 174 countries.

The UN's Gender-related Development Index (GDI) for 1993 is based on male-female gaps in education, infant mortality and expectation of life on a 0-100 scale. It varies from 39 in Kerala to 34 in Madhya Pradesh with the Indian index at 49.
State /Regional 3Level Studies

Pande Committee (1968) appointed by the Government of India (GOI) used ranking procedure to classify the states in India. Indicators used for identifying backward districts are: distance from larger cities and large industrial projects, per capita income, population engaged in secondary and tertiary activities, factory employment, and non/under utilization of economic and natural resources.

Subsequently, the Planning Commission of India in consultation with the National Development Council (NDC) recommended the indicators such as per capita food grains/commercial crops production, proportion of agricultural workers, per capita industrial output (gross), factory employment or alternative employment in secondary and tertiary activities, per capita consumption of electricity and, length of surface roads and railway milege in relation to population.

Both Pande committee and the Planning Commission have suggested a certain minimum level of infrastructural facilities for providing incentives for industrial development.
Amonker (1973) has developed a composite measure of development based on: per capita income, percentage of urban population, percentage of literate population, percentage of non-agricultural workers, percentage of female workers, and percentage of literate females. With state as unit of analysis, the level of development has been assessed through ranking and the sum of all ranks is taken as the measure of development of the state. Using con-elation and canonical correlation, the development impact on family planning performance is analysed among 16 states in India.

Reddy (1977) has used eleven educational development indicators such as literacy rate, enrollment rates (for primary, middle, secondary, and higher secondary schools), percentage of got enrollments (in primary, middle and secondary schools) arid percentage of untrained teachers (in primary, middle and secondary schools). The State has been taken as unit of analysis. Using Taxonomic method, states are ranked, classified and compared with regard to educational development.
Using Taxonomic method for assessing Village Amenity Index, Angacharyulu and Pandu Ranga Rao (1979) have obtained values for pattern and measure of basic village amenities for 21 states in India. Altogether twenty two indicators have been used which are drawn from agriculture, animal husbandry, communication, credit, drinking water, education, electricity, health, and marketing.

Narayan Das and Patel (1980) developed a model to measure regional disparities in development in India with 10 indicators and state as unit of investigation. The indicators used are: literacy rate per 1000 persons, total workers in manufacturing other than household industry per 1000 persons, total male workers in agriculture per 1000 male working population, total dependency ratio, urban-rural ratio, medical and para medical personnel per 10,000 population, percentage of gross area irrigated to gross area sown, surfaced roads (kms) per 1000 sq.kms, percentage of villages electrified, and total workers in tertiary sector per 100 persons. Using Principal Components method, the authors have identified various dimensions of development such as industrial development, social development, agricultural development and their constraints. Seventeen states have been considered in the analysis.
An analysis of "Regional Disparities in India" has been attempted by iViundina rnani (1983). With state as unit of analysis, 17 states have been analyzed on regional disparities. The indicators used for classification were drawn from industry, transport, irrigation, power, banking, education, health and medical, and irrigation pump sets (LP sets). The author has used weights according to the plan priorities (as adopted in various plans) and constructed an index of development.

Swaminathan and Subramanian (1986) developed agricultural development index based on percent irrigated area to net area sown, percent area under commercial crops to total area, and percent consumption of fertilisers. State has been taken as unit of investigation.

Rai and Shanti Sarup (1990) used 14 indicators with an objective to examine the inter-state differentials in socio-economic development. The indicators included are: net sown area per cultivator, percentage of agricultural workers to total workers, average food grains production per capita, consumption of fertilizers per hectare of cropped area, percentage of gross irrigated area to gross
cropped area, average daily employment of factory workers per lakh of population, domestic consumption of electricity per capita, gross output in industry per capita, industrial consumption of electricity per capita, number of banks per lakh population, number of students in primary and secondary schools per 1000 population, total road length per 100 sq.kms, per capita income at current prices, and percentage of literates.

Kulkarni and Kumar (1991) used indicators to measure socio-economic development in relation to population growth in various states in India. The indicators of Socio-economic development included in their study are: per capita state domestic product, percentage of population below poverty line, and female literacy rate. Fourteen Indian states have been covered for the analysis. With state as unit of investigation and using ranking method and regression analysis, an attempt has been made to explain variation in population growth across states in relation to levels of socio-economic development.
In the National seminar on Indicators of Rural Development held at NIRD during 1991, the key indicators of development for measuring the impact of Rural Development across states has been recommended. The indicators recommended are percentage of workers dependent on non-agriculture to the total number of workers, infant mortality rate, female literacy rate, per capita value of agricultural production at constant prices, percentage of consumer expenditure on food items.

Rangacharyulu (1993) used the above indicators with slight modification for developing a composite development index of Rural Areas. The rural areas of the Indian states are taken as unit of investigation. With major assumption of linearity, the author has applied principal components method and factor scores have been calculated for classifying the states into Mgfo, moderate and How based on the development scores. Seventeen major states were considered for the analysis. The indicators used are: ratio of population dependent on non-agriculture to population dependent on agriculture, female literacy rate, infant mortality rate, per capita value of agricultural production at constant prices, and percentage of expenditure on food to total household expenditure.
Hanumantha Rao (1997) identified a set of indicators of living at the state level which are per capita consumer expenditure at current prices, per capita expenditure vis-a-vis poverty line, Gini's coefficient of inequality in consumption expenditure, share of top and bottom deciles in consumption expenditure, per capita cereal intake, share of food in total consumption expenditure, share of food grains in total consumption expenditure, percentage of poor and ultra poor, poverty gap as a percentage of the poverty line, percentage distribution of persons across economic categories, overall Index of economic well-being, health status, crude birth rate, crude death rate, infant mortality rate, expectation of life, educational status, literacy level (general and females), human development Index (HDI).

Human Development Index as a measure of Rural Development for rural areas in selected states for the years 1961, 1971, 1981 and 1987-88 have been calculated by Hanumautha Rao (1977) using the indicators such as education standards, life expectancy, monthly per capita expenditure at constant prices. The author has obtained human development index for each state and varies from 0 to 1.
Dadibhavi and Vaikuntha (1997) have attempted to construct an index of infrastructure for Rural Development based on the state wise data for the period 1973-74 and 1983-84, covering 17 states in India. The Rural Development Infrastructure Index (RDII) is obtained using variables such as rural literacy rate in percentage, infant mortality rate, primary health centers per lakh population, number of rural financial institutions, road length per 100 kms (in kms), road length per lakh population (in kms), net area irrigated as percent of net sown area, percentage of villages electrified, electricity used in agriculture (in kwh per hectare of net sown area), fertilizer consumption (in kg per hectare of gross cropped area). The authors have applied principal components method in the process of analysis.

Nair (1985) analysed socio-economic variables of the inter-state differentials in relation to contraceptive acceptance rate in India, through multivariate analysis. Fifteen major states of India were considered for the analysis. The variables selected for the analysis include population density, proportion of urban population, average size of the village, percentage of literates, per capita income, and acceptance rate of contraception. Zero order correlation, multiple regression and partial correlation analysis are used.
Shivakurnar (1990) has attempted to compute Human Development Index for 17 states in India for 1987 using the same methodology adopted by UNDP. The index is based on life expectancy, adult literacy and per capita income. Analysis revealed that out of 17 states analyzed, U.P has got a low index value of 0.292 and Kerala with a highest value of 0.651.

Kumar (1990) has analyzed the levels of economic and social development in India using secondary data for 14 states in India. Using Taxonomic method, measure of development for the states have been obtained separately for economic variables and social variables and then they are combined together to get a single index. The economic variables included in the analysis are per capita income at current prices, per capita consumption of electricity, index of infrastructural development (CMIE's), per capita production of food grains, percentage of population below poverty line, ratio of gross capital formation to invested capital for all industries, and input-output ratio of all industries. The social variables used in the analysis of development are: per capita government expenditure on health, literacy rate for 5+age group, female age at marriage, crude birth rate, infant mortality rate and percentage of female literacy.
An analysis of indicators of inter-state disparities has been carried out by Uraa Kapila (1991) and indicators grouped into indicators of income, poverty and unemployment, agricultural indicators, industrial indicators, infra structural indicators, social service indicators, resource allocation indicators.

Maha.devan et.al. (1991) identified four indicators such as literacy to represent social development, per capita net domestic product for economic development, road length per 100 sq.km to represent infrastructural development and Infant Mortality Rate to represent status of health. It is argued that the above indicators are a balanced mix of essential core features of development in any society. The above mentioned development indicators are taken for examining the interrelationship between development and population growth at the national level/ state level. It is found that correlation matrix and path analysis are used to determine the relative influence of Overall development index on population growth.
Bhatia (1999) built a state wise composite index of rural infrastructure and examined the relationship between infrastructural development and levels of production and growth in agriculture. With state as unit of analysis, the major items of infrastructure included in the analysis are: irrigation, power, transport, communication, education and health.

Gupta (1986) determined the level of rural development in India using variable such as unemployment rate in rural areas, index of unemployment intensity in rural labour households, percentage of rural population below poverty line, male and female literacy rates (5+), infant mortality rate, percentage of villages electrified, percentage of villages connected by all weather and fair weather roads. Using arbitrary weights, an index of rural development has been constructed which vary from 0 to 1.

District Lewi studies

Bhattacharjee (1980) attempted to analyse the relationship between population growth and socio-economic development in India by taking district as unit of analysis. The indicators considered for preparing the composite index of development are density of
population per square km, percentage of urban population, literacy rate, number of schools per 100 students in the age group of 0-14 years, number of colleges per 1000 students in the age group of 15-25 years, per capita income, total agricultural production per hectare of sown area, percentage of non-agricultural work force, female activity rate, number of beds per 1000 population, number of banks per 1000 population, percentage of village electrified, number of factories per 1000 workers and road length per square km.

He has developed a composite index by converting the values of the variable to a common scale by a transformation with values varying between 0-100 scale. The lowest value of an indicator is considered as zero and the highest as 100. The intermediate values of the indicators are estimated by simple interpolation. The average of the total score determines the relative position of the districts within the state. On the basis of the average scores, the districts are grouped. This method is considered as superior than rank order method.
Bhattacharjee (1984) developed a composite development index in a study of family planning programme in Karnataka state. The variables included are density of population, sex ratio, percentage of urban population, activity rate, per capita income, agricultural production per hectare of sown area, length of road per square km., literacy rate, number of villages electrified, number of post offices per 10,000 population, number of factories per 1000 factory workers, and number of beds per 1000 population. The researcher has classified the districts of Karnataka into highly developed, medium developed, and less developed.

In an attempt to identify the levels of district development in Maharastra, Seetha Prabhu, and Sarkar (1992) used 20 indicators of development covering areas of agriculture, industry, human resources and infrastructure. The indicators included in the analysis are gross irrigated area as a percentage to gross cropped area, number of agricultural pumpsets per 1000 hectares of net sown area, fertilizer consumption per hectare of gross cropped area in kgs, amount of bank credit per hectare of gross cropped area, number of tractors per 10,000 hectares of net sown area, number of factories per lakh population, average daily employment per 1000 population (industrial workers), value added per worker (in 000's rupees),
percentage of bank credit to the industrial sector, Percentage of urban population, number of dispensaries per lakh population, number of beds in medical institutions per 10,000 population, number of primary schools per lakh population, number of secondary schools per lakh population, percentage of literates per lakh population, number of post offices per lakh population, number of banks per 10,000 population, road length per 100 sq.km of geographical area (km), railway length per 10,000 sq.km of geographical area, number of telephones per 1000 population.

The researchers applied ranking, indexing and principal components method to classify the districts according to the development score obtained in each case. Instead of standardizing the variables, the author has divided the value of each indicator by its mean in order to remove the scale bias in the data. Principal components method has been used to obtain scores and accordingly the district are ranked in order of their development level.

Vinod Vyasulu and Vani (1997) have calculated six human development indices with different combinations based on income, life expectancy, infant mortality rate, total literacy, male literacy and female literacy. The following are the human development indices developed by the researchers for districts in Karnataka.
HDI 1 — income, life expectancy and total literacy
HDI 2 — income, life expectancy and male literacy
HDI 3 — income, life expectancy and female literacy
HDI 4 — income, Infant Mortality Rate and total literacy
HDI 5 — income, Infant Mortality Rate and male literacy
HDI 6 — income, Infant Mortality Rate and female literacy

The HDIs have been calculated for all the 19 districts of Karnataka with district as unit of investigation. Two alternative methods have been followed in the construction:

(i) Maximum and Minimum values are chosen within the districts of Karnataka, and

(ii) Maximum is fixed according to some target, i.e., for literacy the maximum is 100 per cent; for infant mortality and life expectancy, the maximum is fixed as the maximum among all the districts in India (This maximum turns out to be a district from Kerala).
By applying factor analytic method Rangacharyulu (1983) used indicators such as percentage of workers to total population, literacy rate, percentage of gross cropped area to the total cropped area, percentage of villages electrified, population served per doctor, road length per 100 sq.km of area, percentage of village population covered by co-operative societies, and number of banks per lalch population with district as unit of investigation in the state of Punjab. Principal Components Method has been used to extract factors explaining maximum variance in development. The author has also attempted to rank the 12 districts on the basis of factor scores obtained through principal component method.

"On developmental variations in Infant Mortality in Andhra Pradesh, Prasad (1978) studied 21 districts of Andhra Pradesh (AP) by using data on educational facilities, communication, transportation, mechanisation of farming, electricity, financial resources and medical services."
Classification of districts according to level of development in Bihar has been carried out by Pathak and Aravind Pandey (1992). Using 1981 census data for 31 districts, a composite index of development for various districts are calculated applying Principal Components Method. The variables included in the analysis are literacy rate, proportion of females remaining single in the age group (15-19), per cent households having electricity supply, number of hospitals and dispensaries per 100 thousand population, level of urbanization, percentage of main workers in the age group (15-59), percentage of households having sale drinking water supply and percentage of area sown having irrigation facilities, which represents various dimensions of the socio economic development in 31 districts in Bihar.

Block /Mandal/Dhana level studies

Hanumantha Rao (1987) using taxonomic method has analysed the development status of Mandate in Nalgonda district of Andhra Pradesh. The variables included in the composite index of development are percentage of literates, percentage of main workers in the population, percentage of female workers, percentage of
industrial workers, percentage of small and marginal cultivators, irrigation ratio, cropping intensity, irrigation intensity, agricultural connections per 1000 hectares, ratio of road mileage, number of tractors -per lakh hectares, number of oil engines and electric motors per 1000 hectares, number of PHCs per mandal, percentage of villages with bus facility, percentage of villages having post office, percentage of villages having primary school, percentage of villages having doctor facility, percentage of villages having bank/cooperative credit society and number of doctors per 10,000 population. The analysis covered fifty nine mandals.

Rural Development in Orissa with block as unit of investigation has been conducted by Parida (1987) with indicators such as cropping intensity, i.e., gross cropped area as percentage of net area sown, the area under high yielding variety (HYV) paddy as percentage of total area under paddy, fertilizer consumption per 10 hectares of gross cropped area, the area under crops other than food crops as percentage of total area under crops, number of workers in non-agricultural activities as percentage of total main workers.
Seventy-seven blocks in 3 districts have been dealt within this analysis. Principal components method of factor analysis has been employed and development scores for each block has been worked out.

An analysis of levels of development in the Rural Himalayas by Naithani and Pockhriyal (1995) involved the variables such as drinking water facilities, medical facilities, educational institutions, availability of electricity, availability of pucca road approach, and post and telegraph offices at the block level. Ranking, Indexing, Composite Rank Scores, Unweighted Composite Indices and weighted composite indices have been calculated for each block.

Ammatus Zhora Eusuf and Ahsan (1996) have analyzed the Socio-economic status of the Thanas of Hill Districts of Bangladesh. The socio economic development indicators used in the analysis were urban population, literacy, percentage of households having electricity, sources of drinking water, main source of income from agriculture (percent), percentage of households having sanitary toilet, number of primary schools, population density.
Adopting scoring procedure total scores have been worked out for each Thana under study based on which the thanas have been grouped. The scores were shown on a map by Thana. These maps assist in evaluating the relationship between tribal population and the socio economic status of Thanas.

Village level studies

D’Souza (1978) identified eight indicators of development at the village level which are primary school, post office, electrification, middle school, dispensary, secondary school, health centre, and college. The above indicators were identified using Guttman scales following temporal comparison method.

Balakrishna et.al, (1982) identified indicators which are broadly grouped under major heads as food and nutrition, clothing and footwear, housing, possessions, savings and investment, employment and wages, occupation / agriculture, transport and communication, recreation and cultural activities. Participation, education, health, community level amenities / functionaries, and status of weaker sections and women. The procedure for selection of indicators for the scale has been developed in two stages, viz., (i) using simple score (ii) using paired comparison method.
George (1989) used 3 villages with different levels of development. Here the researcher has determined the village development status on the basis of agricultural development. Irrigation potential is taken as an indicator of agricultural development and Mandate were grouped according to levels of irrigation potential. The irrigation potentials are grouped into: irrigation level with below 30 percent, irrigation level between 30-40 percent and irrigation level above 40 percent.

Sinha and Kanitkar (1994) developed a composite village level development index for 80 villages in Orissa based on eight major categories of variables of socio-economic development which are infrastructural facilities, educational facilities, health facilities, mass media and communication facilities, accessibility to government infrastructure, agricultural development indicators, economic condition and industry related development indicators, and information education communication (IEC) activities / other educational activities for health and family welfare.

Scoring method has been used and the score for each item under the eight categories ranged from 0 to 2 and the composite VLI score ranged from 0 to 80. The average VLI score has been worked out to be 26.8 with a standard deviation of 10.7 and C.V 40 per cent indicating the heterogeneous development level of villages under study.
Singh and Pandey (1996) constructed an index of village development based on indicators such as: Distance from town, railway station, metalled road, health sub centre, primary health centre; Mode of Transport - animal pulled cart etc, tempo, taxi, bus, train, others; Health in terms of availability of primary health centre, maternal and child health centre, charitable clinic/ dispensary, integrated child development scheme (ICDS) / anganwadi (balwadi), mahila mandal, health practitioner (allopathic / homeopathi/ ayurvedie/ unani), trained and untrained dhai and Infrastructural facilities such as post office / telegraph office / telephone, library, tea stall / tea huts, primary / middle / high schools, other than primary schools, village cooperative society / cooperative bank / other banks, markets, fairs & festivals, fair price shop & others, and drinking water with tap, hand pump, well, pond, canal and river. Mean and standard deviation have been worked out for each variable according to size of the villages under study and making use of \(I = \frac{\sum WX}{\sum EW} \), the overall indices of development have been determined.
Madan and Tara Madan (1983) analyze village development in terms of changes that have taken place over a period of 15 years in two villages in Uttar Pradesh. The authors visited the villages during 1965-66 and they revisited the villages in 1979-80. This is a comparative study of villages with regard to village development from social perspective. This study observed changes in respect of land reforms, agriculture, animal husbandry, credit, supplies, village industries, welfare services etc., over a period of time.

Gandotra, et.al (1988) with village as unit of investigation used variables such as, electricity, tap water, health facility, pucca road, post office and distance from nearest town to infrastructure (physical facilities), secondary & higher secondary schools, literacy and Schedule caste and Schedule tribe population (social facilities); Irrigation, electric motor / diesel pumpsets, tractors, thrashers, price of cultivable land (agri. facilities); Industrial units, workers in non-agricultural (non-agricultural facilities) and dependency ratio, population density (population pressure). Using scoring procedure composite index of village development is determined.

Singh and Yadava (1990) developed socio economic status index which is based on caste, land, income, education, house, clothing, and food.
Jathol (1991) classified the villages in Hoshiarpur block into advanced and backward with variables such as location of the village - whether it is in the plains or in the hilly area, availability of transport, nearness to an urban centre, availability of education and medical facilities, adoption of new farm technology by cultivators, cottage and small scale industries, gobar gas plants, piggery, poultry etc.

Joshi (1992) studied the role and impact of infrastructure development in terms of road transport and power on the economic development in the hill areas of Uttar Pradesh (U.P).

Prodipto Roy et.al, (1992) used health and educational institutions, type of roads, latrine, drinking water, solid waste disposal facilities etc., as indicators assessing environment status.
Income, occupation and education are used in the socio-economic status classification of families (Kuppusamy 1962; ICMR, 1964). Later Indian Council of Medical Research (ICMR) developed a scale in which caste is also included along with indicators such as occupation, total family income and education. Further, the scales use information related to the "household" or the "respondent" in respect of education and occupation (ICMR, 1966).

An index of development without percapita income has been developed by McGranham (1972) with indicators drawn from health, transportation, use of electricity, agricultural production, industries and urbanization.

Dudley Seers (1972) measured development in terms of reduction of poverty, unemployment and inequality and clothing and shelter and job.
Pareek and Trivedi (1964) developed socio-economic status scale using variables such as caste, occupation, education, social participation, land possession, type of housing, farm powers, material possession and type of family. Scoring procedure with arbitrary weights has been used to obtain a measure of socio-economic status of the family.

Prakash (1982) developed a socio-economic status scale with variables such as occupation, education, social participation, and possession of land, housing condition, type of house, availability of electricity and material possession.

Studies on socio-economic status / Hviag coadltloiias

Ganguli and Gupta (1976) used indicators such as nutrition, housing, medical care, education, clothing, leisure, security and environment to analyze the levels of living of the families in India.

Ubaidur Rob (1990) measured socio-economic status of women based on education, occupation and family income.

To examine the levels of living of the people, Chattopadhyay (1982) used indicators consisting of both social and economic aspects.
The indicators included in the analysis are food, shelter, clothing, education and health.

The Nutrition Foundation of India (1984) used educational status of the family as an index of development. In this, it treated a person with education upto secondary school level as educated and the proportion of educated adults among all adults (aged 15 years or above) in the family as indicators of educational status of the family. Further, the families are classified into (i) low educational status (without a single educated member) and (ii) high educational status (with more than half educated members).

A socio economic status scale has been developed by Santosh Jain and Malhan (1987) with indicators such as caste, average educational status, and per capita income of the households. With a simple scoring procedure, a scale has been developed to measure the socio economic status and accordingly households are classified.

Cherian and Lilly Cherian (1995) in their study measured the socio economic status of the family using the indicators, viz., education, occupation and income of the parents. Using seven points scale, the authors have classified the families into low socio economic status, middle socio economic status and high economic status.
The economic status of the family has been measured by Bhuyan (1995) on the basis of the indicators such as: possession of radio, television, watch, domestic electricity, hurricane lamp, cot, quilt etc. while analyzing the socio economic factors influencing child mortality in Bangladesh.

Das Gupta (1990) analysed the child mortality in relation to education, occupation, income and wealth of the family. Allaudin and Faruquee (1983) used socio-economic indicators such as: religion, employment, social class, education, occupation, land ownership and family income.

Absence of health care centers, distance from health centers, household income and parents' education as indicators associated with the level of coverage or acceptance of immunization (Markland, and Durand, 1976).

The above studies revealed various socio economic aspects such as health, education, employment, agriculture, animal husbandry, energy, poverty, women employment, birth rate, death rate, infant mortality rate and the like as areas to be included in relation to village
development analysis. From these aspects a list of 36 variables / indicators are prepared for village development analysis and are given in the chapter on Besiga aad Methodology. The availability of data from secondary sources was also kept in mind while selecting the above variables for investigation in the present study. Some of the methods and techniques mentioned above are described in the following chapter.