<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Variation of transmission coefficient T as a function of energy E for an attractive square well potential Eq.(3.5) with $V_0 = -3$ and $a = 5$.</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison of bound and resonant states of an attractive square well in Eq.(3.5) for potential parameters $V_0 = -3$ and $a = 5$ with the corresponding states for the box potential (3.6). The abscissa is the sequence number of the states. It may be pointed out that in the case of the bound states of attractive square well $n - 1$ signifies the ‘principal’ quantum number associated with energy eigenvalues.</td>
<td>56</td>
</tr>
<tr>
<td>3.3</td>
<td>Variation of T with E for the repulsive rectangular barrier [Eq. (3.17)] with $V_0 = 3$ and $a = 5$.</td>
<td>60</td>
</tr>
<tr>
<td>3.4</td>
<td>Comparison of the barrier top resonant state energies of the repulsive rectangular potential [Eq. 3.17] with $V_0 = 3$ and $a = 5$ with the corresponding states for the box potential [Eq. 3.18]. The abscissa is the sequence number of the states.</td>
<td>62</td>
</tr>
<tr>
<td>3.5</td>
<td>Plot of $T(E)$ for an attractive square well Eq.[3.5] with $V_0 = -3$, $a = 5$ as indicated by W; the repulsive rectangular barrier [Eq.(3.17)] with $V_0 = 6$ and $a = 0.25$ is indicated by B, and the combination of attractive square well and repulsive barrier [Eq.(3.21)] with $V_0 = -3$, $V_1 = 6$, $a = 5$, and $b = 5.5$ is indicated by W-B.</td>
<td>65</td>
</tr>
</tbody>
</table>
3.6 Plot of $T(E)$ for the Poschl-Teller potential Eq.(3.22)

4.1 Comparative study of magnitude of symmetric wave function of bound state (B) ($k = 1.398$, $k^2 = 1.955$ and QB state ($k = 1.398 - i0.136e - 03$, $k^2 = 1.955 - i0.380e - 03$) in the interaction region of the potential given by Eq.(4.19). Potential parameters are $V_0 = 8$, $a = 3$, $b = 4.5$.

4.2 Comparative study of magnitude of anti-symmetric wave function of bound state (B) ($k = 1.856$, $k^2 = 3.444$) and the QB state ($k = 1.856 - i0.468e - 03$, $k^2 = 3.444 - i0.174e - 02$) in the interaction region of the potential given by Eq.(4.19). Potential parameters are $V_0 = 8$, $a = 3$, $b = 4.5$.

4.3 Variation of T as a function of energy E for the potential given by Eq.(4.21). Potential parameters are $V_0 = 8$, $a = 3$, $c = 0.3$. The peaks of T indicates the QB states and above barrier resonances.

4.4 Comparison of the variation of T as a function of energy E generated by BW type formula given by Eq.(4.40) with the exact $T (EX)$ obtained from numerical computation. The potential used is given by Eq.(4.19). The potential parameters are $V_0 = 8$, $a = 3$, $b = 3.5$. The peaks of T indicates the QB states.

4.5 Comparison of the variation of T as a function of energy E generated by BW type formula (4.40) with the exact $T (EX)$ obtained from numerical computation. The potential used is given by Eq.(4.21). The potential parameters are $V_0 = 8$, $a = 3$, $c = 0.3$. The peaks of T indicates the QB states.

4.6 Comparison of the variation of exact $T (EX)$ and the $T (BW)$ obtained from the empirical formula given by Eq.(4.41) with energy E at above barrier energies for the potential given by Eq.(4.19). The potential parameters are $V_0 = 8$, $a = 3$, $b = 3.5$.
4.7 The variation of magnitude of wave function of typical QB state ($k^2 = 1.955 - i0.380e-03$) with that of above barrier (AB) resonant state ($k^2 = 9.571 - i0.241$) for the potential given by Eq.(4.19). The potential parameters are $V_0 = 8$, $a = 3$, $b = 4.5$.

4.8 Variation of T_{qt} as a function of below barrier energy $E(0−2.5)$ shows peaks at QB state energies for the potential given by Eq.(4.19). The potential parameters are $V_0 = 8$, $a = 3$, $b = 3.5$.

4.9 Variation of T_{qt} as a function of below barrier energy $E(2.5−8.0)$ shows peaks at QB state energies for the potential given by Eq.(4.19). The potential parameters are $V_0 = 8$, $a = 3$, $b = 3.5$.

4.10 Variation of T_q, T_{qr}, T_{qt} with E in the vicinity of first QB state energy ($E_R = 0.214 − i0.194e−02$) for the potential given by Eq.(4.19). The potential parameters are $V_0 = 8$, $a = 3$, $b = 3.5$.

4.11 Variation of T_q, T_{qr}, T_{qt} and τ_{BW} with E in the vicinity of second QB state energy ($E_R = 0.855 − i0.156e−01$) for the potential given by Eq.(4.19) and Eq.(4.43) gives the definition of τ_{BW}. The potential parameters are $V_0 = 8$, $a = 3$, $b = 3.5$.

4.12 Variation of T_q, T_{qr}, T_{qt} with E in the vicinity of fourth QB state energy ($E_R = 3.422 − i0.127$) for the potential given by Eq.(4.19). The potential parameters are $V_0 = 8$, $a = 3$, $b = 3.5$.

5.1 Variation of T and R across a rectangular barrier (indicated by B) ($V_0 = 5$, $a = 2$) and corresponding well (W) as a function of E. In this and rest of the figures potential strengths and E are in fm^{-2} units and a in fm units.

5.2 Comparative behaviour of coefficient of transmission (T), reflection (R) and absorption (A_b) as a function of energy (E) in the case of an absorptive barrier ($V_0 = 5$, $W_0 = 5$, $a = 1.5$) and absorptive well ($V_0 = −5$, $W_0 = 5$, $a = 1.5$).

5.3 The variation of the absorption A_b, transmission T, and reflection R coefficients as a function of absorption strength W_0 for energy $E = 4$ indicating the gradual dominance of R for large W_0 for $E = 3$.
5.4 The variation of the absorption \(A_b \), transmission \(T \), and reflection \(R \) coefficients as a function of the absorption strength \(W_0 \) for energy \(E = 4 \) indicating the gradual dominance of \(R \) for large \(W_0 \). For \(E = 4 \), \(T \) becomes practically zero when \(W_0 > 12 \).

5.5 Variation of the coefficients \(A_b \), \(T \), and \(R \) as a function of the energy \(E \) for an absorptive potential with \(V_0 = 0, W_0 = 3, a = 1.5 \). The lowest value of the energy is \(E = 0 \).

5.6 Variation of the absorption strength \(W_0(E) \) where the absorption peak occurs as a function of energy \(E \). The lowest value of the energy is \(E = 1 \).

6.1 Variation of the differential cross section \(\sigma(\theta) \) as a function of \(\theta \) for energies \(k^2 = 4 \) and \(k^2 = 36 \) for a hard core potential of radius \(a \).

6.2 Variation of the partial wave amplitude \(|1 - S| \) as a function of \(l \) for hard core (HC) scattering and complex well (CW) scattering. The curve is drawn as an aid to the eye.

6.3 The differential scattering cross section \(\sigma(\theta) \) as a function of \(\theta \) for large strengths of the repulsive core (I) and absorptive (II) potentials. The parameters are shown in the figure.

6.4 Variation of \(\sigma_a, \sigma_{el} \), and \(\sigma_T \) as a function of \(W_0 \); \(\sigma_a \) is a maximum in the vicinity of \(W_0 = k^2 \).

6.5 Variation of \(\sigma_a, \sigma_{el}, \) and \(\sigma_T \) as a function of energy \(E \). Note that \(E \) begins slightly away from \(E = 0 \), because we discuss the threshold behavior separately.

6.6 Variation of \(\sigma_a \) and \(\sigma_{el} \) as a function of \(E \) for three sets of potential parameters as shown in plots (a)-(c). The lowest value of the energy is \(E = 0.02 \).

6.7 Variation of the absorption strength \(W_0(E) \), as a function of energy \(E \) for different absorptive potentials.

6.8 Variation of \(\sigma_a, \sigma_{el}, \sigma_T, \) and \(\sigma_{hc,el} \) as a function of \(E \) as \(E \rightarrow 0 \).