Contents

1. Introduction
 1.1 Motivation 4
 1.2 Objectives of the current work 8
 1.3 Organization of the thesis 9

2. Accelerometer Theory and Design 11
 2.1 Introduction 11
 2.2 Working principle of accelerometer 12
 2.3 Specifications of the accelerometer 17
 2.4 Configuration of accelerometer 17
 2.5 Material selection 19
 2.6 Analytical design 21
 2.7 Electrical design 26
 2.8 FEM modelling and simulation 27
 2.9 Mesh convergence study 28
 2.10 FEM simulation results 30
 2.10.1 Acceleration Vs displacement 30
 2.10.2 Acceleration Vs change in capacitance 31
 2.10.3 Bending stresses in the beam 33
 2.10.4 Modal analysis 34
 2.11 Cross-axis sensitivity 35
 2.12 System level simulation of the sensor 36
 2.12.1 System level modelling 37
 2.12.2 Small signal AC analysis 38
 2.12.3 Pull in analysis 39
 2.12.4 Transient analysis 40
 2.13 Dynamic analysis 41
 2.13.1 Squeeze film damping 43
2.13.2 Simulation results 45
2.13.3 Squeeze film damping coefficient variation with frequency 46
2.13.4 Harmonic analysis 48

2.14 Interface electronics 49
2.14.1 Capacitance to voltage conversion scheme 50
2.14.2 Features of the interface electronics 54

2.15 Results and discussion 55

3. Fabrication of accelerometer 57
3.1 Introduction 57
3.2 Wet bulk micromachining 57
3.2.1 Theory 58
3.2.2 Etching solutions 60
3.2.3 Etching shapes 61
3.2.4 Silicon dioxide as masking material 61
3.2.5 Corner undercutting and compensation 62

3.3 Simulations in Intellisuite 64
3.3.1 Dimensions of corner compensation structure 66
3.3.2 Centralization of beams with respect to proof-mass 67

3.4 Process flow for fabrication 69
3.4.1 Silicon wafer processing for microstructure fabrication 69
3.4.2 Top glass wafer processing 80
3.4.3 Bottom glass wafer processing 81

3.5 Results and discussion 83

4. Accelerometer Testing 86
4.1 Introduction 86
4.2 Chip level probing 88
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Packaging and electronics integration</td>
<td>90</td>
</tr>
<tr>
<td>4.4</td>
<td>Scale factor test</td>
<td>91</td>
</tr>
<tr>
<td>4.5</td>
<td>Hysteresis test</td>
<td>94</td>
</tr>
<tr>
<td>4.6</td>
<td>Bias stability or drift</td>
<td>96</td>
</tr>
<tr>
<td>4.7</td>
<td>Linearity test</td>
<td>97</td>
</tr>
<tr>
<td>4.8</td>
<td>Cross-axis sensitivity test</td>
<td>101</td>
</tr>
<tr>
<td>4.9</td>
<td>Temperature sensitivity test</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>4.9.1 Temperature sensitivity of the offset</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>4.9.2 Temperature sensitivity of the scale factor</td>
<td>107</td>
</tr>
<tr>
<td>4.10</td>
<td>Bandwidth test</td>
<td>110</td>
</tr>
<tr>
<td>4.11</td>
<td>Shock test</td>
<td>112</td>
</tr>
<tr>
<td>4.12</td>
<td>Results & discussion</td>
<td>114</td>
</tr>
<tr>
<td>5.</td>
<td>Conclusions and Scope for future research</td>
<td>115</td>
</tr>
<tr>
<td>5.1</td>
<td>Conclusions of work</td>
<td>115</td>
</tr>
<tr>
<td>5.2</td>
<td>Scope for future research</td>
<td>116</td>
</tr>
<tr>
<td>6.</td>
<td>References</td>
<td>117</td>
</tr>
<tr>
<td>7.</td>
<td>Papers published</td>
<td>125</td>
</tr>
</tbody>
</table>