Table of contents

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate</td>
<td>xiii</td>
</tr>
<tr>
<td>Declaration</td>
<td>xiv</td>
</tr>
<tr>
<td>Abbreviations and symbols</td>
<td>xv</td>
</tr>
<tr>
<td>Abstract</td>
<td>xviii</td>
</tr>
</tbody>
</table>

Part 1: Introduction

1. **Cancer**
 1.1 Classification
 1.2 Breast cancer
 1.3 Risk factors for Breast cancer
 1.4 Genetics of Breast cancer
 1.5 Development of spontaneous Breast cancer

2. **Cell signaling pathways: importance in cancer therapy**

3. **Apoptosis in treatment of cancer: first hope of cure**
 3.1 Morphological and molecular changes during apoptosis
 3.2 Molecular regulators of apoptosis
 3.2.1 The cell biology of caveolae
 3.2.2 Cyclin-dependent kinase 5 (Cdk5)
 3.2.3 The mitogen-activated protein (MAPK) kinase cascades
 3.2.4 Akt kinase
 3.2.5 NF-κB; Mechanism of action
 3.2.6 p53
 3.2.7 Bcl-2 Family
 3.3 Cancer treatment

4. **Chemotherapeutic Drugs**
 4.1 5-Fluorouracil
 4.2 Carboplatin
 4.3 Vinblastine
 4.4 Side effects of chemotherapy

Objective of the Study

43
Part 2: Materials and methods

1. **Source of materials**
 - 1.1 Cell lines
 - 1.2 Culture media, serum and antibiotics
 - 1.3 Drugs, Inhibitors and SiRNAs
 - 1.4 Antibodies
 - 1.5 Plasmid constructs
 - 1.6 General reagents

2. **Methods**
 - 2.1 Cell culture
 - 2.2 MTT cytotoxicity assay
 - 2.3 Western blotting
 - 2.4 Maxi-preparation of plasmid DNA
 - 2.5 Reverse transcription PCR
 - 2.6 Cell transfection methods
 - 2.7 Trypan blue staining
 - 2.8 Reporter assays
 - 2.9 Electrophoretic mobility shift assay
 - 2.10 Immunofluorescence confocal microscopy
 - 2.11 Flow cytometry for cell cycle analysis
 - 2.12 Immunoprecipitation and kinase assay
 - 2.13 Drug uptake assay
 - 2.14 Animals, animal keeping condition, and tumor growth regression model
 - 2.15 Statistical analysis

Part 3: Enhancement in susceptibility of cancer cells to Carb and 5-FU by MCD: Involvement of Akt, NF-κB and Bcl-2

1. **Introduction**
 - 1.1 Cyclodextrins
 - 1.2 Methyl-β-cyclodextrin (MCD): structure and complex formation
 - 1.3 Pharmaceutical applications of cyclodextrin
2. Results and Discussion

2.1 Methyl-β-cyclodextrin (MCD) is cytotoxic at higher concentration and induces cell death in MCF-7 and MDA MB-231 cells

2.2 MCD mediated Fas-FADD complex formation is partially responsible for sensitivity difference in MCF-7 and MDA MB-231 cells

2.3 Carb or 5-FU induces cell death in MCF-7 and MDA MB-231 cells

2.4 MCD enhances the receptiveness of MCF-7 and MDA MB-231 cells to Carb or 5-FU

2.5 Cell survival as well as anti-apoptotic molecules are involved in enhanced cell death

2.6 MCD facilitates the intracellular drug uptake in MCF-7 and MDA MB-231 cells

2.7 MCD and 5-FU combination effectively regressed tumor growth in nude mice

2.8 p21 and Bax are upregulated following treatment of MCF-7 cells in vivo with combination of MCD and 5-FU

2.9 MCD and 5-FU combination not only regressed tumor growth of B16F10 cells derived tumor in C57 mice strain but also improved survival rate of animals

3. Conclusions

Part 4: Cell cycle regulatory protein 5 (Cdk5):
A novel target of ERK in Carb induced cell death 93-114

1. Introduction

2. Results and Discussion

2.1 MCF-7 and MDA MB-231 cells express active Cdk5 and p35 protein

2.2 Cdk5 protein is involved in breast cancer cell proliferation

2.3 Cdk5 and its regulatory protein p35 expression increases after Carb treatment in MCF-7 and MDA MB-231 cells

2.4 Carb treatment increases Cdk5 activity in MCF-7 and MDA MB-231 cells
2.5 Inhibition of Cdk5 activity promotes cell survival in Carb treated cells 101
2.6 Carb activated ERK induced cell death in MCF-7 and MDA MB-231 cells 103
2.7 Carb induced ERK utilizes Cdk5 as one of its downstream target 105
2.8 p53 protein expression and transactivation activity increased after Carb treatment 107
2.9 p53 is down-stream target of Cdk5 in MCF-7 cells 108

3. Conclusions 111

Part 5: Caveolin-1 mediates Carb or Vin induced cell death via p53 and p38 dependent pathways 115-132

1. Introduction 115

2. Results and Discussion 117

2.1 Carb and Vin induces cell death in MCF-7 cells 117
2.2 Chemotherapeutic drugs Carb or Vin increased Cav-1 protein expression and its phosphorylation 118
2.3 Cav-1 has direct involvement in Carb or Vin induced cell death 119
2.4 Both Carb and Vin increased p53 protein expression and its transcriptional activity in MCF-7 cells 120
2.5 Carb or Vin treatment leads to p38 phosphorylation in MCF-7 cells 122
2.6 Drug induced Cav-1 phosphorylation is regulated by p38 in MCF-7 cells 123
2.7 Both p53 and p38 are essential for Carb or Vin induced cell death in MCF-7 cells 124
2.8 P53 positively regulates Cav-1 gene expression 126
2.9 Cav-1 does not modulate basal or drugs induced p53 activity 128

3. Conclusions 130

References 133-145

Appendix

List of publications
List of meetings attended