Chapter 1. General Introduction and Literature survey [1-66]

1.1. Background
1.2. Objectives and Methodology
 1.2.1. Objectives
 1.2.2. Methodology
 1.2.3 Outline of Thesis
1.3. Thick film technology
 1.3.1. Introduction
 1.3.2. Fundamental of the process
 1.3.3. Thick film materials
 1.3.4. Substrates
 1.3.5. Screen preparation
 1.3.6. Image transfer
 1.3.7. Screen printing
 1.3.8. Squeegee
 1.3.9. Drying and firing process
1.4. Advantages and limitations of thick film technology
1.5. Characterization of thick films
 1.5.1. Structural characterization
 1.5.1.1. X-ray diffraction (XRD)
 1.5.1.2. Scanning Electron Microscopy (SEM)
 1.5.2. Electrical characterization
 1.5.2.1. Conduction mechanism
 1.5.2.2. Resistivity
 1.5.2.3. Temperature coefficient of resistance (TCR)
 1.5.2.4. Activation energy
 1.5.3. Gas sensing characterization
 1.5.3.1. Metal oxide based gas sensors
 1.5.3.2. Working principle
 1.5.4. Gas Sensing parameters
 1.5.4.1. Sensitivity
 1.5.4.2. Operating temperature
 1.5.4.3. Selectivity
 1.5.4.4. Stability
 1.5.4.5. Robustness
 1.5.4.6. Response and recovery times of the sensor
 1.5.4.7. Sensor range
1.6. Ways to improve the sensor characteristics
1.7. Literature Review
1.8. Data for various reported gas sensor materials

References
Chapter 2. Experimental Work

2.1. Introduction
2.2. Preparation of active powders and fabrication of Thick Film Resistors
 2.2.1. Preparation of active powder as a functional material
 2.2.2. Fabrication of Thick Film Resistors
 2.2.2.1. Substrate Cleaning
 2.2.2.2. Paste Formulation
 2.2.2.3. Screen printing
 2.2.2.4. Firing / sintering
2.3. Characterization of thick films
 2.3.1. Structural characterization
 2.3.1.1. Thickness measurement
 2.3.1.2. X-ray diffraction (XRD)
 2.3.1.3. Scanning Electron Microscopy (SEM)
 2.3.1.4. Energy Dispersive X ray analysis (EDAX)
 2.3.2. Electrical characterization
 2.3.2.1. Resistivity (ρ)
 2.3.2.2. Temperature coefficient of resistance (TCR)
 2.3.2.3. Activation energy (ΔE)
2.3.3. Gas sensing system and characterization
 2.3.3.1. Home built static gas characterization system
 2.3.3.2. Determination Resistance of the sample
 2.3.3.3. Maintaining the gas concentration at ppm level
 2.3.3.4. Gas sensing parameters
References

Chapter 3. Preparation and Characterization of undoped ZnO thick films

3.1. Introduction
3.2. Physical properties of ZnO material
3.3. Experimental procedure
3.4. Results and discussion
 3.4.1. Calcination, drying and firing of the films
 3.4.2. Structural Characterization
 3.4.2.1. X-Ray diffraction analysis of ZnO thick films
 3.4.2.2. SEM analysis of ZnO thick films
 3.4.2.3. EDAX- Energy dispersive X-ray analysis
 3.4.3. Electrical Characterization
 3.4.3.1. Resistivity of the ZnO thick films
 3.4.3.2. Activation Energy of the ZnO thick films
 3.4.3.3. TCR of the ZnO thick films
 3.4.4. Gas sensing studies
 3.4.4.1. Optimization of operating temperature and Sensitivity of gas sensor
 3.4.4.2. Selectivity of other gases against NO$_2$
 3.4.4.3. Variation of Sensitivity with gas concentration (ppm)
 3.4.4.4. Response and recovery time of the sensor
References
Chapter 4. Preparation and Characterization of ZnO: Cr$_2$O$_3$ [117-153]

4.1. Introduction
4.2. Experimental procedure
4.3. Results and discussion
 4.3.1. Drying and firing of the films
 4.3.2. Structural Characterization
 4.3.2.1. X-ray diffraction analysis of ZnO: Cr$_2$O$_3$ films
 4.3.2.2. SEM analysis of ZnO: Cr$_2$O$_3$ thick films
 4.3.2.3. EDAX-Energy dispersive X-ray analysis
 4.3.3. Electrical Characterization
 4.3.3.1. Resistivity of ZnO: Cr$_2$O$_3$ thick films
 4.3.3.2. TCR of ZnO: Cr$_2$O$_3$ thick films
 4.3.3.3. Activation Energy ZnO: Cr$_2$O$_3$ thick films
 4.3.4. Gas sensing studies
 4.3.4.1. Optimization of operating temperature and Sensitivity of gas sensor
 4.3.4.2. Selectivity of other gases against H$_2$S
 4.3.4.3. Variation of Sensitivity with gas concentration (ppm)
 4.3.4.4. Response and recovery time of the sensor
References

Chapter 5. Preparation and Characterization of ZnO: Nb$_2$O$_5$ [154-184]

5.1. Introduction
5.2. Experimental procedure
5.3. Results and discussion
 5.3.1. Drying and firing of the films
 5.3.2. Structural Characterization
 5.3.2.1. X-ray diffraction analysis of ZnO: Nb$_2$O$_5$ films
 5.3.2.2. SEM analysis of ZnO: Nb$_2$O$_5$ thick films
 5.3.2.3. EDAX-Energy dispersive X-ray analysis
 5.3.3. Electrical Characterization
 5.3.3.1. Resistivity of ZnO: Nb$_2$O$_5$ thick films
 5.3.3.2. TCR of ZnO: Nb$_2$O$_5$ thick films
 5.3.3.3. Activation Energy ZnO: Nb$_2$O$_5$ thick films
 5.3.4. Gas sensing studies
 5.3.4.1. Optimization of operating temperature and Sensitivity of gas sensor
 5.3.4.2. Selectivity of other gases against Ethanol
 5.3.4.3. Variation of Sensitivity with gas concentration (ppm)
 5.3.4.4. Response and recovery time of the sensor
References

Chapter 6. Preparation and Characterization of ZnO: Al [185-216]

6.1. Introduction
6.2. Experimental procedure
6.3. Results and discussion
 6.3.1. Drying and firing of the films
 6.3.2. Structural Characterization
 6.3.2.1. X-ray diffraction analysis of ZnO: Al films
6.3.2.2. SEM analysis of ZnO: Al thick films
6.3.2.3. EDAX-Energy dispersive X-ray analysis
6.3.3. Electrical Characterization
 6.3.3.1. Resistivity of ZnO: Al thick films
 6.3.3.2. TCR of ZnO: Al thick films
 6.3.3.3. Activation Energy ZnO: Al thick films
6.3.4. Gas sensing studies
 6.3.4.1. Optimization of operating temperature and Sensitivity of gas sensor
 6.3.4.2. Selectivity of other gases against CO₂
 6.3.4.3. Variation of Sensitivity with gas concentration (ppm)
 6.3.4.4. Response and recovery time of the sensor
References

Chapter 7. Preparation and Characterization of ZnO: Cu thick films [217-249]

7.1. Introduction
7.2. Experimental procedure
7.3. Results and discussion
 7.3.1. Drying and firing of the films
 7.3.2. Structural Characterization
 7.3.2.1. X-ray diffraction analysis of ZnO: Cu films
 7.3.2.2. SEM analysis of ZnO: Cu thick films
 7.3.2.3. EDAX-Energy dispersive X-ray analysis
 7.3.3. Electrical Characterization
 7.3.3.1. Resistivity of ZnO: Cu thick films
 7.3.3.2. TCR of ZnO: Cu thick films
 7.3.3.3. Activation Energy ZnO: Cu thick films
 7.3.4. Gas sensing studies
 7.3.4.1. Optimization of operating temperature and Sensitivity of gas sensor
 7.3.4.2. Selectivity of other gases against LPG
 7.3.4.3. Variation of Sensitivity with gas concentration (ppm)
 7.3.4.4. Response and recovery time of the sensor
References

Chapter 8. Conclusions and scope for future research [250-256]

8.1. Conclusions
8.2. Scope for future research

Research Publications [257-259]