LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Examples of various discontinuities in fusion welds</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Examples of various discontinuities in fusion welds</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Cracks in welded joints caused by thermal stresses</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic of some friction stir technologies</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Optical microstructural changes of the SZ with welding speeds</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison between polished and etched FSW cross sections of 2024 aluminium</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Hardness variation as a function of lateral distance from the weld line for each weld at mid-thickness</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Macro cross section views of friction stir weld zone</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Friction Stir Welding process flow chart</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic Diagram of Material Constraints</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Dimple Feature Produced when the Tool is removed from the material</td>
<td>39</td>
</tr>
<tr>
<td>3.4</td>
<td>FSW Machines</td>
<td>40</td>
</tr>
<tr>
<td>3.5</td>
<td>Schematic Diagram of: Tilt Angle, Shoulder Heel Plunge and downward Force</td>
<td>41</td>
</tr>
<tr>
<td>3.6</td>
<td>Basic Friction Stir Welding Tool</td>
<td>42</td>
</tr>
<tr>
<td>3.7</td>
<td>Schematic View of a Generic and conventional design for a FSW Tool</td>
<td>46</td>
</tr>
<tr>
<td>3.8</td>
<td>FSW Tool Shoulder Profiles</td>
<td>48</td>
</tr>
</tbody>
</table>
4.12 Taper screw thread pin profiled tool
4.13 Triflute pin profiled tool
4.14 Cutting the full length of the tool out of the 500 mm rod
4.15 Cut rod to a uniform diameter of 30 mm
4.16 Machining the tool’s holder
4.17 Machining the tool pin
4.18 Screwing
4.19 final shape of the pin
4.20 Tempering diagram for H13 tool steel
4.21 Cause and effect diagram
4.22 Macrostructure of the FSW joints
4.23 Weld trails set 1
4.24 Weld trails set 2
4.25 Weld trails set 3
4.26a Percentage contribution of factors (Means) for Tensile strength
4.26b Percentage contribution of factors (Means) for yield strength
4.26c Percentage contribution of factors (Means) for % elongation
4.26d Percentage contribution of factors (Means) for hardness
4.27 checking weld plate parallelism with table
4.28 Weld plate after surface grinding
4.29 centering the tool on the workpiece joining line
4.30 tool moving while welding the workpiece
4.31 tool just touching the edge of the workpiece and getting ready to be traversed

4.32 Friction stir welded plates using Taper screw thread pin tool

4.33 Friction stir welded plates using Tri-flute pin tool

4.34 Scrap produced from FSW due to extra penetration of the tool to overcome non uniform sheet thickness

4.35 incomplete welding resulting in a crack

4.36 Schematic illustration of tensile test specimens in the transverse direction to the weld zone

4.37 Illustration of distribution planning of the specimens on the sheet material

4.38 Dimensions of tensile test specimen used in this study

4.39 original tensile test samples

4.40 Hydraulic wedge grippers used for tensile test on the MTS Machine with data acquisition system

4.41 Specimen in UTM

4.42 Vickers micro hardness tester

4.43 Schematic View of Gross and Plastic Deformation

4.44 Buehler automatic mounting press used for mounting the samples for the microstructure study

4.45 Samples mounting

4.46 Optical microscope and the data acquisition computer used for the study of the microstructures

5.1 Top surface images of the weld zone with various process parameters for Tapered screw thread pin tool

5.2 Top surface images of the weld zone with various process parameters for Square pin tool
5.3 Top surface images of the weld zone with various process parameters for Tri-flute pin tool
5.4 Top surface images of the weld zone with various process parameters for straight cylindrical pin tool
5.5 Top surface images of the weld zone with various process parameters for straight cylindrical pin with threading tool
5.6 Appearance of the weld using Triflute pin tool
5.7 Appearance of the weld using taper screw thread pin tool
5.8 Influence of process parameters on tensile strength
5.9 Influence of interaction of process parameters on tensile strength
5.10 Column graph displaying the Tensile strength for taper screw thread pin tool
5.11 Effect of tool rotational speed, welding speed and axial force on tensile strength for taper screw thread pin tool
5.12 Column graph displaying the Tensile strength for Triflute pin tool
5.13 Effect of tool rotational speed, welding speed and axial force on tensile strength for triflute pin tool
5.14 Influence of process parameters on yield strength
5.15 Influence of interaction of process parameters on yield strength
5.16 Column graph displaying the Yield strength for taper screw thread pin tool
5.17 Effect of tool rotational speed, welding speed and axial force on yield strength for taper screw thread pin tool
5.18 Column graph displaying the Yield strength for triflute pin tool
5.19 Effect of tool rotational speed, welding speed and axial force on yield strength for triflute pin tool

5.20 Influence of process parameters on percentage elongation

5.21 Influence of interaction of process parameters on percentage elongation

5.22 Column graph displaying the percentage elongation for taper screw thread pin tool

5.23 Effect of tool rotational speed, welding speed and axial force on percentage elongation for taper screw thread pin tool

5.24 Column graph displaying the percentage elongation for triflute pin tool

5.25 Effect of tool rotational speed, welding speed and axial force on percentage elongation for triflute pin tool

5.26 Influence of process parameters on hardness

5.27 Influence of interaction of process parameters on hardness

5.28 Column graph displaying the hardness for taper screw thread pin tool

5.29 Hardness profiles of base metal and weld produced with taper screw thread pin tool

5.30 Effect of tool rotational speed, welding speed and axial force on hardness for taper screw thread pin tool

5.31 Column graph displaying the hardness for triflute pin tool

5.32 Hardness profiles of base metal and weld produced with Tri-flute pin tool

5.33 Effect of tool rotational speed, welding speed and axial force on hardness for triflute pin tool

5.34 Base metal microstructure at 100X
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.35</td>
<td>Effect of tool rotation speed on microstructure of weld nugget for triflute pin tool</td>
<td>187</td>
</tr>
<tr>
<td>5.36</td>
<td>Effect of welding speed on microstructure of weld nugget for triflute pin tool</td>
<td>187</td>
</tr>
<tr>
<td>5.37</td>
<td>Effect of axial force on microstructure of weld nugget for triflute pin tool</td>
<td>188</td>
</tr>
<tr>
<td>5.38</td>
<td>Effect of tool rotation speed on microstructure of weld nugget for taper screw thread pin tool</td>
<td>189</td>
</tr>
<tr>
<td>5.39</td>
<td>Effect of welding speed on microstructure of weld nugget for taper screw thread pin tool</td>
<td>189</td>
</tr>
<tr>
<td>5.40</td>
<td>Effect of axial force on microstructure of weld nugget for taper screw thread pin tool</td>
<td>190</td>
</tr>
</tbody>
</table>