CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENTS</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>NOMENCLATURE & ACRONYMS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTERS

1. INTRODUCTION

1.1 Introduction of the FSW Technique 1

1.2 Aluminum Alloys and Welding of Aluminum Alloys 3

1.3 Weld Defects using Conventional Processes 5

 1.3.1 Porosity 5
 1.3.2 Slag inclusions 6
 1.3.3. Incomplete fusion and penetration 6
 1.3.4 Weld profile 7
 1.3.5 Cracks 8
 1.3.6 Lameller tears 9
 1.3.7 Surface damage 10

1.4 New Processes 10

1.5 Scope of work 11

2. REVIEW OF LITERATURE

2.1 General Idea of the Friction Stir Technology 13

2.2 Optimization of Mechanical Properties of Welded Joints 15

2.3 Friction Stir Welding in A356 Aluminum Alloy 18
2.4 Friction Stir Welding in 1XXX series Aluminium Alloys 20
2.5 Friction Stir Welding in 2XXX series Aluminium Alloys 20
2.6 Friction Stir Welding in 5XXX series Aluminium Alloys 25
2.7 Friction Stir Welding in 6XXX series Aluminium Alloys 26
2.8 Friction Stir Welding in 7XXX series Aluminium Alloys 27
2.9 Friction Stir Welding in Dissimilar Aluminium Alloys 28
2.10 Friction Stir Welding of Aluminium Alloy and Steel 32
2.11 Comparison between MIG, TIG and FSW 33
2.12 Summary of literature review 34

3. FRICTION STIR WELDING
3.1 Process analysis 35
 3.1.1 Material Positioning 36
 3.1.2 Tool Plunge 38
 3.1.3 Traverse 38
 3.1.4 Pull Out or Run Off 39
3.2 FSW Requirements 39
 3.2.1 Friction Stir Welding Machinery 40
 3.2.2 Friction Stir Welding Tools 41
3.3 Process Parameters 42
 3.3.1 Welding speed (or) Material Feed Speed 42
 3.3.2 Spindle Rotation 43
 3.3.3 Weld Pitch 43
 3.3.4 Heat Input 44
3.4 FSW Tooling

3.4.1 Tool Requirements
3.4.2 Basic Form and Construction
3.4.3 General Features
3.4.4 Tooling Variations
3.4.5 Weld Variables
3.4.6 Summary

3.5 Applications of Friction Stir Welding

3.5.1 Applications of Friction Stir Welding in Different Geometries
3.5.2 Applications of Friction Stir Welding in Aluminum Alloys and other Materials
3.5.3 Applications of Friction Stir Welding in Industry

3.6 Advantages of Friction Stir Welding

3.7 Limitations of Friction Stir Welding

3.8 Microstructural Analysis of Friction Stir Welding

3.9 Comparison with Fusion Welding

4. EXPERIMENTATION

4.1 Material specifications and preparation
4.2 Friction Stir Welding Machine and the Process
4.3 FSW Tooling used in this Investigation

4.3.1 Tool material selection
4.3.2 Tool design
4.3.3 Manufacturing of Tools
4.3.4 Heat treatment

4.4 Application of DOE for optimizing the welding parameters

4.4.1 Identifying the important parameters

4.4.2 Finding the working limits of Parameters

4.4.3 Selection of orthogonal array (OA)

4.4.4 The signal-to-noise (S/N) ratio analysis for Responses

4.4.5 Analysis of variance (ANOVA) for Responses

4.4.6 Interpretation of experimental results for Responses

4.4.7 Estimation of optimum process parameters

4.4.8 Confirmation test for the Responses

4.4.9 Correlation of process parameters

4.5 Friction Stir Welding Trials

4.6 Testing of welds

4.6.1 Tensile Testing

4.6.2 Hardness Testing

4.7 Microstructural analysis

4.7.1 Sample Preparation for Study of Microstructure under optical Microscope

4.7.2 Study of Microstructure under Optical Microscope

5. RESULTS AND DISCUSSIONS

5.1 Defect analysis for different tool geometries

5.2 Influence of tool geometry and process parameters on Mechanical properties
5.2.1 Effect of tool geometry and process parameters on the appearance of the weld 148

5.2.2 Effect of tool geometry and process parameters on the Tensile strength 150

5.2.3 Effect of tool geometry and process parameters on the Yield strength 156

5.2.4 Effect of tool geometry and process parameters on the Percentage elongation 163

5.2.5 Effect of tool geometry and process parameters on the Hardness 169

5.3 Influence of tool geometry and process parameters on Metallographic structures 177

5.3.1 Effect of tool geometry and process parameters on the macro structures of welded joints 177

5.3.2 Effect of tool geometry and process parameters on the microstructures of welded joints 186

6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions 197

6.2 Future work 200

REFERENCES 201

Appendices

Appendix A: List of publications 212
Appendix B: Welding Processes Classification 214
Appendix C: Properties of heat treated AA6082 215
Appendix D: H13 Tool Steel data sheet 216
Appendix E: Manufacturing procedure for FSW tools 217
Appendix F: Supplementary information 224