LIST OF FIGURES

Figure 1.1. Global trends for thermal management [1]... 1

Figure 2.1. Channel shapes widely investigated for application in heat sinks [19]........... 8

Figure 2.2. Schematic representation of rectangular microchannels used in microchannel heat sinks... 10

Figure 2.3. Schematic representation of the serpentine channel heat sink [35].............. 12

Figure 2.4. Schematic representation of fractal channels [37]...................................... 13

Figure 2.5. Schematic representation of wavy microchannels [41]............................... 16

Figure 2.6. Schematic diagram of fin wall modifications [47]...................................... 18

Figure 2.7. Schematic diagram of double layer MCHS [59]..................................... 24

Figure 2.8. Schematic diagram of manifold type heat sink [68]................................. 26

Figure 2.9. Schematic diagram of pin fin type heat sink [76]................................. 28

Figure 2.10. Schematic of converging - diverging channel [85]................................ 30

Figure 2.11. Schematic of microchannel longitudinal vortex generator [87]............. 31

Figure 3.1. (a) Schematic diagram of different microchannel/minichannel heat sink configurations and (b) CAD models of the computational domain................................. 38

Figure 3.2. Grid sensitivity study for MCHS: Centre line temperature of the bottom plate of configuration ‘A’ at x = 1.55 mm... 44

Figure 3.3. Computational grids employed for simulation of configuration ‘A’............. 46
Figure 3.4. Variation of average Nusselt number with pressure drop. 47

Figure 3.5. Velocity contour at the mid plane in depth of the channel for different configurations of (a) microchannel heat sinks for coolant inlet velocity of 2 m/s and heat flux of $1 \times 10^6 \text{W/m}^2$ and (b) minichannel heat sinks for coolant inlet velocity of 0.3 m/s and heat flux of $5 \times 10^4 \text{W/m}^2$. ... 49

Figure 3.6. Velocity data extraction line... 50

Figure 3.7. Coolant velocity profile in the third channel of different configurations of (a) microchannel heat sinks for coolant inlet velocity of 2 m/s and heat flux of $1 \times 10^6 \text{W/m}^2$ and (b) minichannel heat sinks for coolant inlet velocity of 0.3 m/s and heat flux of $5 \times 10^4 \text{W/m}^2$. .. 51

Figure 3.8. Temperature contour of the bottom plate of different new (a) microchannel heat sink at the inlet velocity of 2 m/s and $q = 1 \times 10^6 \text{W/m}^2$ and (b) minichannel heat sink at the velocity of 0.3 m/s and $q = 5 \times 10^4 \text{W/m}^2$. ... 53

Figure 3.9. Temperature contour of the bottom plate of conventional and different new (a) MCHS at pumping power of 0.15 W and (b) mCHS at pumping power of 0.0486 W. ... 54

Figure 3.10. Variation of average Nusselt number with pumping power for (a) microchannel heat sink ($q = 1 \times 10^6 \text{W/m}^2$) and (b) minichannel heat sink ($q = 5 \times 10^4 \text{W/m}^2$).. 58

Figure 3.11. Variation of ‘0’ with pumping power for (a) microchannel heat sink ($q = 1 \times 10^6 \text{W/m}^2$) and (b) minichannel heat sink ($q = 5 \times 10^4 \text{W/m}^2$)............................... 60

Figure 3.12. Variation of total thermal resistance with pumping power for (a) microchannel heat sink ($q = 1 \times 10^6 \text{W/m}^2$) and (b) minichannel heat sink ($q = 5 \times 10^4 \text{W/m}^2$).. 63

Figure 4.1. Schematic diagrams of new minichannel heat sink and conventional minichannel heat sink. ... 68

Figure 4.2. Schematic diagrams of the experimental setup (not to scale) for evaluation of heat transfer performance of (a) new minichannel heat sink and (b) conventional minichannel heat sink. ... 70
Figure 4.3. Variation of pressure drop per unit channel length with coolant velocity in conventional and new minichannel heat sinks. ... 72

Figure 4.4. Variation of pumping power with volumetric flow rate in conventional and new minichannel heat sinks. ... 74

Figure 4.5. Variation of Nusselt number with Reynolds number in the new and conventional minichannel heat sinks. ... 75

Figure 4.6. Comparison of total thermal resistance – pumping power relationship for new and conventional minichannel heat sinks. ... 77

Figure 4.7. Substrate temperature gradient vs pumping power for new and conventional minichannel heat sinks. ... 80

Figure 4.8. Schematic diagrams of the experimental setup (not to scale) for evaluation of heat transfer performance of (a) new microchannel heat sink and (b) conventional microchannel heat sink. .. 83

Figure 4.9. Comparison of total thermal resistance – pumping power relationship for new and conventional microchannel heat sinks. ... 84

Figure 5.1. Schematic representation of the MCHS and the computational domain studied for identification of appropriate channel width, aspect ratio and fin width. 87

Figure 5.2. Influence of mass flow rate and aspect ratio on pumping power for channels of different widths. .. 93

Figure 5.3. Parity plot for dimensionless pumping power. .. 94

Figure 5.4. Effect of microchannel width and aspect ratio on temperature of solid and liquid regions at the pumping power of 0.2 W. .. 96

Figure 5.5. Effect of microchannel width and aspect ratio on substrate temperature contours. ... 97

Figure 5.6. Heat transfer coefficient vs mass flow rate data in microchannels of different widths and aspect ratio. .. 99
Figure 5.7. Heat transfer coefficient per unit pumping power vs mass flow rate data in microchannels of different widths and aspect ratios. 101

Figure 5.8. Variation of Nusselt number with Reynolds number in microchannels of width 200 µm, 150 µm and 100 µm. 103

Figure 5.9. Parity plot for Nusselt number correlation. 105

Figure 5.10. Influence of pumping power on total thermal resistance for microchannels of different widths and aspect ratios. 108

Figure 5.11. Parity plot for dimensionless total thermal resistance. 110

Figure 5.12. Non-uniformity in substrate temperature ‘ω’ vs pumping power. 113

Figure 5.13. Non-uniformity in substrate temperature ‘ω’ vs pumping power for two different heat fluxes and microchannel dimensions. 115

Figure 5.14. Influence of fin width on total thermal resistance – pumping power relationship for the new MCHS. 116

Figure 5.15. Influence of fin width on convective thermal resistance – pumping power relationship for the new MCHS. 118

Figure 5.16. Influence of fin width on capacitive thermal resistance – pumping power relationship for the new MCHS. 119

Figure 5.17. Influence of fin width on conductive thermal resistance – pumping power relationship for the new MCHS. 120

Figure 6.1. Schematic diagram of the experimental setup (Not to scale). 126

Figure 6.2. (a) Scanning electron micrograph of CuO nanoparticles (b) Powder X-Ray diffraction pattern of CuO nanoparticles. 131

Figure 6.3. Influence of nanoparticle volume concentration on thermal conductivity of CuO-water nanofluid. 132