Contents

Abbreviations i-ii
List of Tables iii
List of Figures iv-x

1.0 Introduction ... 1-6
 1.1 The genus *Gossypium*
 1.2 Economic potential of *Gossypium* spp. fiber
 1.3 Distribution of *Gossypium* spp.
 1.4 Molecular advancement in improving *Gossypium* spp. Fiber
 1.5 Importance of the study
 1.6 Objectives

2.0 Review of Literature .. 7-36
 2.1 Cotton
 2.2 Cotton fiber
 2.2.1 Genes involved in cotton fiber development
 2.2.1.1 The functionally characterized genes that play role in
 fiber initiation
 2.2.1.2 The functionally characterized genes that play role in
 fiber elongation and secondary cell wall biosynthesis
 2.2.2 Phytohormones involved in cotton fiber development
 2.2.2.1 Auxin and gibberellic Acid
 2.2.2.2 Brassinosteroid (BR)
 2.2.2.3 Ethylene
 2.2.2.4 Abscisic acid (ABA)
 2.2.2.5 Cytokinin
 2.2.3 Proteome of cotton fiber growth
 2.2.4 Metabolome of cotton fiber growth
 2.2.5 miRNAs and cotton fiber growth
 2.2.6 *SQUAMOSA* Promoter binding like (SPL) Transcription factors
 2.2.6.1 Role of SPL genes in leaf development
 2.2.6.2 Role of SPL genes in flower development
 2.2.6.3 Role of SPL genes in phase transitions
 2.2.6.4 Role of SPL genes in Gibberellins (GA) response in development
2.2.6.5 Role of SPL genes in plant architecture formation
2.2.6.6 Role of SPL genes in abscission zone development
2.2.6.7 The miR156 acts upstream of miR172
2.2.6.8 Gene regulation cascades of miR156, miR172 and SPL13 after seed germination

3.0 Materials and Methods ... 37-48

3.1 Materials
 3.1.1 Plant Material
 3.1.2 Molecular biology reagents, Kits and Chemicals
 3.1.3 Plasmids and Bacterial strain
 3.1.4 Primers/Oligonucleotides

3.2 Methods
 3.2.1 Techniques of Molecular Biology
 3.2.1.1 RNA isolation
 3.2.1.2 DNase treatment
 3.2.1.3 First strand cDNA synthesis
 3.2.1.4 Quantitative real–time (qRT) PCR analysis
 3.2.1.5 Cloning of gene and microRNA
 3.2.1.5.1 Designing of oligonucleotide primers
 3.2.1.5.2 Isolation and cloning of full-length cDNA of GhSPL5D and miR156
 3.2.1.5.3 Sequencing of clones and sequence analysis
 3.2.1.5.4 Construct preparation for plant expression vector
 3.2.1.6 Agrobacterium mediated genetic transformation of cotton
 3.2.1.7 Transformation of Plant Expression Constructs into Agrobacterium
 3.2.1.8 Transformation of cotton
 3.2.1.9 Confirmation of Transgenic Plants through PCR
 3.2.1.10 qRT-PCR analysis for Confirmation of Transgenic Plants
 3.2.1.11 Phylogenetic analysis of GhSPL genes
 3.2.1.12 Small RNA blot analysis
 3.2.1.13 RNA ligase mediated 5’ RACE and semiquantitative PCR analysis
3.2.1.14 Scanning Electron Microscopy (SEM) and fiber quality measurement
3.2.1.15 Histochemical GUS staining and GUS assay
3.2.1.16 Illumina (Hi-seq) Sequencing

4.0 Results ... 49-76
 4.1 Molecular cloning and characterization of GhSPL5D gene in cotton
 4.2 Cloning and characterization of GhSPL5D promoter in cotton
 4.3 Identification and phylogenetic analysis of SPL genes in cotton
 4.4 Genomic organization of GhSPL5D gene
 4.5 The expression of miR156 and GhSPLs are inversely related during cotton fiber development
 4.6 miR156 regulate expression of GhSPL5D by targeting its 3’ UTR
 4.7 Semi-quantitative PCR analysis to measure GhSPL5D cleaved product
 4.8 GhSPL5D controls cotton fiber initiation and boll biomass
 4.9 Scanning electron microscopy analysis of GhSPL5D O/E and KD lines ovule
 4.10 Measurement of cotton boll biomass and fiber quality of GhSPL5D O/E and KD lines
 4.11 Cotton transgenic plants overexpressing GhmiR156 and target mimicry (MIM156) validate interaction of GhSPL5D and miR156
 4.12 Measurement of boll biomass and fiber quality of GhmiR156 O/E and MIM156 lines
 4.13 RNA-seq analysis of 0DPA initiating fibers
 4.14 Gene ontology analysis of differentially expressed genes
 4.15 Metabolic pathway analysis of differentially expressed genes

5.0 Discussion .. 77-82
6.0 Summary and Conclusion ... 83-88
Bibliography .. 89-106
Appendix I ... 107-108
Appendix II ... 109-112
List of Publication .. 113