Chapter 1

1. Introduction 1-22

1.1 Use of probiotics 4

1.2 Use of prebiotics 4

1.3 Combined effect of synbiotics on the health of human body 5

1.4 Nutraceutical and pharmaceutical importance of prebiotics in food additive and starter culture 5

1.4.1 Prebiotics as food additive and starter culture 5

1.4.2 Gut health maintenance, colitis and constipation prevention 6

1.4.3 Cholesterol removal, reduction of cardiovascular disease and prevention of obesity 7

1.4.4 Restoration of vaginal ecosystem 8

1.4.5 Effect of neutraceuticals on bacteriocin production 8

1.4.6 Effect of prebiotics in poultry, fishery, pig, cattle feed 8

1.4.7 Prebiotic production from food industry wastes 9

1.5 Commercial prebiotics 9

1.6 Biosynthesized nano prebiotics 10

1.7 Probiotic bacteria-genus *Pediococcus* 11
Chapter 2

2. Literature review 23-73

2.1. Investigations on prebiotics 23

2.2. General Chemical Structure of Inulin-type Prebiotics 25

2.3. General Description of Commercial Inulin-type Prebiotics 26

2.4. Inconsistency in the Use of the Term FOS 28

2.5. Production of Oligofructose, Inulin, and Inulin HP 28

2.6. Applications of inulin in Food 29

2.7. Applications of inulin-type prebiotic as fiber material 30

2.8. Applications as a Fat Replacer 30

2.9. Application as a Sugar Replacer 31

2.10. Metabolic Function of Inulin-type Prebiotics 31

2.11. Inulin-type Prebiotics and Growth of Specific Gut Microorganisms 32

2.11.1. Overview of Prebiotic Activity 32

2.11.2. Prebiotic Activity of Fructooligosaccharide (FOS) 33

2.11.3. Prebiotic Activity of Oligofructose 34

2.11.4. Prebiotic Activity of Inulin and Inulin HP 35

2.11.5. Prebiotic Activity of Oligofructose-enriched Inulin or Oligofructose-enriched Inulin HP 35

2.12. Extraction, characterisation and use of prebiotics 36

2.13. Studies on bio-synthesis of nano-prebiotics 44
2.14. Antimicrobial resistance of commercially available prebiotics 48
2.15. Probiotics 58
2.16. Conclusions 60

References 60

Chapter 3

3 Aims and Objectives 74-77

Chapter 4

4 Materials and Methods 78-96

4.1 Materials 78
4.1.1. Chemicals 78
4.1.2. Microorganisms 79
4.1.3. Microbial culture media 80
4.1.3.1 Media composition of MRS broth 80
4.1.4 Equipment 81
4.1.4.1 Analytical Instruments 81
4.2 Methods 83
4.2.1 Extraction of Inulin 83
4.2.2 Determination of Inulin in Natural Prebiotics 84
4.2.2.1 Characterization of Extracted Inulin Powder 84
4.2.2.1.1 FESEM (Field Emission Scanning Electron Microscopy) 84
4.2.2.1.2 FTIR (Fourier Transformed Infrared Spectroscopy) Analysis

4.2.2.1.3 TLC (Thin Layer Chromatography)

4.2.2.1.4 HPLC (High Performance Liquid Chromatography)

4.2.2.1.5 DNS (3-5 Di-nitro salicylic Acid method)

4.2.3 Optimization study

4.2.4 Cell growth study

4.2.4.1 Preparation of starter culture

4.2.4.2 Batch experiments

4.2.4.3 Determination of microbial biomass concentration

4.2.5 Preparation of crude extract of garlic, basil leaf and betel leaf

4.2.5.1 Extract of garlic

4.2.5.2 Extract of basil and betel leaves

4.2.6 Extraction of the prebiotic from psyllium husk (Isabgol)

4.2.6.1 Solubilisation of arabinoxylan

4.2.6.2 Assay of arabinoxylan

4.2.7 Characterization of Extracted arabinoxylan

4.2.7.1 FTIR (Fourier Transformed Infrared Spectroscopy) Analysis

4.2.7.2 TLC analysis

4.2.7.3 HPTLC analysis

4.2.8 Determination of prebiotic score
4.2.9 Determination of antimicrobial activity of Pediococcus acidilactici in terms of zone of inhibition

4.2.10 Basil-Silver and Betel-silver nanoparticles preparation

4.2.10.1 FTIR analysis of prebiotic nanoparticles

4.2.10.2 TEM analysis

4.2.10.3 XRD analysis

4.2.10.4 Cell growth study in presence of biosynthesized nanoparticles

5. Results and Discussions

5.1 Characterization of isolated prebiotics

5.1.1 Field Emission Scanning Electron Microscopy (FESEM)

5.1.2 FTIR analysis of isolated fructo-oligosaccharide, inulin

5.1.3 Thin Layer Chromatography of isolated fructo-oligosaccharide, inulin
5.1.4 HPLC analysis of isolated fructo-oligosaccharide, inulin

5.1.5 Estimation of purity of inulin in inulin- extract from different sources by DNS method

5.1.6 Characterization of Extracted arabinobioxylan

5.1.6.1 FTIR (Fourier Transformed Infrared Spectroscopy) Analysis

5.1.6.2 TLC analysis

5.1.6.3 HPTLC analysis

5.2 Effect of prebiotics on cell growth dynamics of probiotics

5.2.1 Optimization study of cell growth media

5.2.1.1 Optimization of growth media using commercially available inulin

5.2.1.2 Optimization study of cell growth media using isolated inulin from garlic, wheat, oat and dalia

5.2.2 Studies on the effect of prebiotic inulin on cell growth dynamics

5.2.2.1 Pediococcus acidilactici growth dynamics in absence of any prebiotic

5.2.2.2 Pediococcus acidilactici growth dynamics in presence of commercially available pure inulin

5.2.3 Studies on cell growth dynamics using inulin isolated from garlic

5.2.3.1 Cell growth dynamics in presence of inulin isolated from garlic as the only electron donor
5.2.3.2 Cell growth dynamics in presence of two electron donors viz., inulin isolated from garlic and glucose 134

5.2.4 Studies on cell growth dynamics in presence of inulin isolated from three more cereals viz., wheat, oat and dalia 140

5.3 Functional activities through synergistic growth of probiotic Pediococcus acidilactici with natural prebiotics 148

5.3.1 Experiments on garlic paste as source of prebiotic 149

5.3.1.1 Specific cell growth rate equation under substrate uninhibited condition 152

5.3.1.2 Specific cell growth rate equation under inhibited condition 153

5.3.2 Studies on basil leaf extract as prebiotic 155

5.3.3 Studies on prebiotic effect of betel leaf extract on Pediococcus acidilactici 158

5.4 Prebiotic score 160

5.5 Antimicrobial activity of Pediococcus acidilactici against E.coli as candidate pathogen 162

5.6 Studies on basil leaf–silver nano particle biosynthesis product 164

5.6.1 Physical Characterization of basil-silver nanoparticles 164

5.6.1.1 UV-Visible spectrophotometric analysis 164

5.6.1.2 TEM analysis 165

5.6.1.3 FTIR spectrophotometry 167

5.6.1.4 XRD analysis 168
5.6.2 Studies on cell growth dynamics in presence of basil-Ag nanoparticles 169

5.7 Studies on betel leaf –silver nano particle biosynthesis product 172

5.7.1 Physical Characterization of betel-silver nano particles 172

5.7.1.1 UV-Visible spectrophotometric analysis 172

5.7.1.2 TEM analysis 172

5.7.1.3 FTIR analysis 174

5.7.2 Studies on cell growth dynamics in presence of betel-Ag nanoparticles 175

References 178

6 Conclusions 181-183

7 Future Work 184-185

8. Appendix 186-191