LIST OF FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fig.1</td>
<td>The location map of the study area.</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Fig.2</td>
<td>The accessibility map of the study area.</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Fig.3</td>
<td>The index map of Land sat imagery.</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Fig.4</td>
<td>The landform divisions in the study area.</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Fig.5</td>
<td>The geomorphology map of the study area.</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Fig.6</td>
<td>The drainage pattern of the study area.</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>Fig.7</td>
<td>The parallel and elongate landforms of the study area.</td>
<td>19a</td>
</tr>
<tr>
<td>8</td>
<td>Fig.8</td>
<td>Seasonal normal rainfall in India.</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>Fig.9</td>
<td>Number of rainy days for India.</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>Fig.10</td>
<td>Co-efficient variation of rainfall in India.</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>Fig.11</td>
<td>Soil map of the study area.</td>
<td>28</td>
</tr>
<tr>
<td>12</td>
<td>Fig.12</td>
<td>The geology of Tamil Nadu comprises of wide spectrum of lithologies ranging from the oldest supracrustals to the youngest Cenozoic sediments.</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>Fig.13</td>
<td>Khondalite -charnockite supergroup and its migmatised equivalence.</td>
<td>34</td>
</tr>
<tr>
<td>14</td>
<td>Fig.14</td>
<td>The geological map of the study area.</td>
<td>36</td>
</tr>
<tr>
<td>15</td>
<td>Fig.15</td>
<td>The South Indian region into charnockite and non-charnockite region</td>
<td>45</td>
</tr>
<tr>
<td>16</td>
<td>Fig.16</td>
<td>The aerial photographs of south India and recognised several deep main faults</td>
<td>49</td>
</tr>
<tr>
<td>17</td>
<td>Fig.17</td>
<td>Drury's land sat imagery interpretation in South India</td>
<td>50</td>
</tr>
<tr>
<td>Fig 18</td>
<td>The General tectonic map of the Precambrian of South India-Sri Lanka showing craton / mobile belt relationship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 19</td>
<td>The tectonic analysis of land sat imagery of Salem sub belts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 20</td>
<td>The Nilgiris and Biligirirangan charnockite massifs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 21</td>
<td>The ultramafic emplacement in Salem district</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 22</td>
<td>Correlation between Precambrian tectonics and mineralisation of southern peninsular India</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 23</td>
<td>Bouguer anomaly map of high-grade terrain of South India</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 24</td>
<td>Total intensity magnetic map suggesting deeper schematic layer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 25</td>
<td>Lineament map of the study area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 26</td>
<td>Wenner method of the electrodes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 27</td>
<td>Schlumberger method of the electrodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 28</td>
<td>The Stiff diagram of the water sample chemical analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 29</td>
<td>Handa’s classification of water samples</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>No</th>
<th>TITLE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Name of the 16 Villages in the study area</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>Classified drainage pattern into categories of basic patterns, modification to the basic patterns and verities of modified pattern</td>
<td>18a</td>
</tr>
<tr>
<td>III</td>
<td>Whole rock analysis by X-ray fluorescence method of charnockite and biotite gneiss of Attur Valley Salem, Tamil Nadu</td>
<td>39</td>
</tr>
<tr>
<td>IV</td>
<td>Microprobe analysis of shear zone</td>
<td>40</td>
</tr>
<tr>
<td>V</td>
<td>The rainfall data in the Salem rain gauge station</td>
<td>67a</td>
</tr>
<tr>
<td>VI</td>
<td>The rainfall data in the rain gauge station in Yercaud</td>
<td>67b</td>
</tr>
<tr>
<td>VII</td>
<td>Water level data of the Salem district</td>
<td>68</td>
</tr>
<tr>
<td>VIII</td>
<td>The resistivity of rocks and minerals</td>
<td>70a</td>
</tr>
<tr>
<td>IX</td>
<td>The application of electrical methods in solving hydrogeological problems</td>
<td>71</td>
</tr>
<tr>
<td>X</td>
<td>Recommended range of hardness of groundwater</td>
<td>78</td>
</tr>
<tr>
<td>XI</td>
<td>Water quality of Domestic uses</td>
<td>84</td>
</tr>
<tr>
<td>XII</td>
<td>Water quality of Agricultural uses</td>
<td>85</td>
</tr>
<tr>
<td>XIII</td>
<td>Water quality of Industrial uses</td>
<td>86</td>
</tr>
<tr>
<td>XIV</td>
<td>Geochemical analysis results of the water samples</td>
<td>87</td>
</tr>
<tr>
<td>XV</td>
<td>Classification of water types in the study area</td>
<td>93</td>
</tr>
</tbody>
</table>