INTRODUCTION
Plants are a vital source of raw material for medicines, later; techniques were developed to produce synthetic replacements for many of the medicines that had been derived from the forest. But recently, problems with drug resistant microorganisms, side effects of modern drugs, and emerging diseases where no medicines are available, have encouraged an interest in plants once again as a significant source of new medicines. Modern-day researchers are coming to appreciate fully the vast medicinal knowledge of the indigenous people. Companies from developed countries are now researching plants, some of which are known to have been used for medicinal purposes and others which offer potential. With further research and exploration, doubtless many other medicines await discovery.

Recent and renewed interest in medicinal plants coupled with developments in information technology has stimulated a sudden increase in the range concerning medicinal plants as a re-emergent health aid. As a result of such developments, access to indigenous peoples and cultures concerning medicinal plants are greatly facilitated. The active participation of such natural custodians and practitioners of valuable knowledge is guaranteed in the generation of research focusing on screening programmes dealing with the isolation of bioactive principles and the development of new drugs.

The use of medicinal plants in the world, and especially in India, contributes significantly to primary health care. Many plants are used in India in the form of crude extracts, infusions or plasters to treat common infections without any scientific evidence of efficacy. Plants which have been used as medicines over hundreds of years constitute an obvious choice
for study. It is interesting to determine whether their traditional uses are supported by actual pharmacological effects or merely based on folklore.

It is estimated that there are 250,000 to 500,000 species of plants on Earth. Relatively small percentages (1 to 10%) of these are used as foods by both humans and other animal species. It is possible that even more are used for medicinal purposes. Marathwada possesses a very rich flora with a total of 1645 species belonging to 746 genera of 155 families.

The Leguminosae family (the Caesalpiniaceae, the Fabaceae, and the Mimosaceae) account for 72 genera containing 217 species. This appears to be one of the dominant groups among plant community in this region. Few plants from Marathwada have been studied for pharmaceutical properties. The work on the Leguminosae family (the Caesalpiniaceae, the Fabaceae, and the Mimosaceae) is particularly poor in this region related with antimicrobial activities and phytochemistry. The majority of work is concerned with taxonomy and physiology. However, some members of the Leguminosae are reputed to have medicinal properties and are used to treat various diseases.

Fungi and bacteria cause important human diseases, especially in tropical regions. Despite the existence of potent antibiotic and antifungal agents, resistant or multi-resistant strains are continuously appearing, imposing the need for a permanent search and development of new drugs. In an effort to discover new lead compounds screening of plant extracts to detect secondary metabolites with relevant biological activities was done.

The aim of this study was to screen for medicinal plant extracts that could be useful for the development of new tools for the control of infectious diseases. Therefore, a systematic evaluation of extracts from the plant
species - *Abrus precatorius* (L.) and *Acacia nilotica* (L.) Del. against two human pathogenic bacterial strains (*Staphylococcus aureus* and *Escherichia coli*) and two plant pathogenic bacterial strains (*Corynebacterium* and *Xanthomonas malvacerum*) was undertaken. Similarly, Antifungal activity was also studied against human pathogenic fungi (*Candida albicans* and *Trichophyton rubrum*) and plant pathogenic fungi (*Alternaria solani* and *Helminthosporium turcicum*).

The extracts from both the plants were subjected for the characterization of various chemical compounds present in these plants. The purification and assay of these purified compounds against the test pathogen systems is also included in the work.

A chapter on the ethno-botanical studies of these two plants encompassing the knowledge accumulated so far in the ancient texts and various herbal knowledge of the folklore medicine is also included.