CONTENTS

Preface viii

1. GENERAL INTRODUCTION
 1.1 Introduction 1
 1.2 Historical Developments 3
 1.3 Preparation Methods 5
 1.4 Characterisation Techniques 7
 1.5 Properties of Nanoparticles 11
 1.6 Nanophase Materials 11
 1.6.1 Structure 9
 1.6.2 Properties 11
 1.7 Nanocomposites 12
 1.8 Applications 16
 1.8.1 Technological 12
 1.8.2 Commercial 13
 1.9 Present Work 16
 1.10 References 16

2. EXPERIMENTAL TECHNIQUES
 2.1 Introduction 23
 2.2 Chemical Precipitation Method 23
 2.3 Experimental Characterisation 23
 2.3.1 X-ray Diffraction Studies 23
 2.3.2 Thermal Studies 25
 2.3.3 FTIR Analysis 26
 2.3.4 Impedance Measurements 27
 2.3.5 Electrical Conductivity Measurements 28
 2.4 References 29

3. SYNTHESIS, SIZE AND STRUCTURE
 3.1 Introduction 32
 3.2 Synthesis of Nanoparticles for the Present Investigation 32
 3.2.1 Synthesis of Nanoparticles 32
 3.2.2 Synthesis of Nanocomposites 33
 3.2.3 Synthesis of nanophase AgI-CuI System 33
 3.3 Preparation of Pellets for the Present Study 34
 3.4 X-ray Diffraction Studies of Nanoparticles 34
 3.4.1 Nanoparticles of AgI 34
 3.4.2 Nanoparticles of CuI 37
 3.4.3 Nanoparticles of Ag₂HgL 38
 3.4.4 Alumina Particles 39
7. ELECTRICAL PROPERTIES OF AgI-Al₂O₃ NANOCOMPOSITES

7.1 Introduction 118
7.2 Experimental Details 119
7.3 Results and Discussion 120
 7.3.1 Analysis of Impedance Spectra of Nanophase AgI and AgI-Al₂O₃ Nanocomposites 120
 7.3.2 Dielectric Properties of AgI-Al₂O₃ Nanocomposites 127
7.4 Conclusion 143
7.5 References 144

8. ELECTRICAL PROPERTIES OF NANOPHASE AgI-CuI SYSTEM

8.1 Introduction 146
8.2 Experimental 147
8.3 Results and Discussion 148
 8.3.1 Impedance Spectroscopic Analysis 148
 8.3.2 Dielectric Properties 157
 8.3.2.1 Dielectric Constant 157
 8.3.2.2 Dielectric Loss 162
 8.3.2.3 AC Conductivity 167
8.4 Conclusion 174
8.5 References 175