LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 2.1: Basic principle behind aerobic biodegradation of hydrocarbons by</td>
<td>15</td>
</tr>
<tr>
<td>microorganisms (adopted from Das and Chandran, 2011):</td>
<td></td>
</tr>
<tr>
<td>Fig 2.2: Enzymatic reactions involved in the processes of hydrocarbons</td>
<td>16</td>
</tr>
<tr>
<td>degradation (adopted from Das and Chandran, 2011):</td>
<td></td>
</tr>
<tr>
<td>Fig 2.3: The contact angle formed by a drop of fluid on a solid surface:</td>
<td>18</td>
</tr>
<tr>
<td>Fig 4.1: Figure (a) and (b) shows protein contents of 71 bacterial isolates</td>
<td>107</td>
</tr>
<tr>
<td>after 5 days of incubation:</td>
<td></td>
</tr>
<tr>
<td>Fig 4.2: Colonies of the most potential isolate XI showing chemotaxis</td>
<td>108</td>
</tr>
<tr>
<td>towards hydrocarbon supplement (used engine oil) on BH agar plate:</td>
<td></td>
</tr>
<tr>
<td>Fig 4.3: Figure in the inset shows endospores as dark prominent spots in</td>
<td>108</td>
</tr>
<tr>
<td>the bacterial cells:</td>
<td></td>
</tr>
<tr>
<td>Fig 4.4: Gel Image of 16SrDNA amplicon of the most potential isolate XI:</td>
<td>109</td>
</tr>
<tr>
<td>Fig 4.5: Fig a, b, and c shows data obtained with forward (618 bp), reverse</td>
<td>109-110</td>
</tr>
<tr>
<td>(832 bp) and consensus sequence (1262 bp) respectively for the isolate XI:</td>
<td></td>
</tr>
<tr>
<td>Fig 4.6: BLAST DATA (Alignment view using combination of NCBI GenBank):</td>
<td>111</td>
</tr>
<tr>
<td>Fig 4.7: Phylogenetic relationships of the isolate XI (Bacillus cereus strain DRDU1, GenBank accession no. KF273330.1) with other most closely related Bacillus species based on 16S rDNA sequencing:</td>
<td>112</td>
</tr>
</tbody>
</table>
Fig 4.8(a): Growth profile of the isolate XI at different concentration of magnesium sulphate: 113

Fig 4.8(b): Growth profile of the isolate XI at different concentration of calcium chloride: 113

Fig 4.8(c): Growth profile of the isolate XI at different concentration of potassium dihydrogen orthophosphate: 114

Fig 4.8(d): Growth profile of the isolate XI at different concentration of dipotassium phosphate: 114

Fig 4.8(e): Growth profile of the isolate XI at different concentration of ammonium nitrate: 115

Fig 4.8(f): Growth profile of the isolate XI at different concentration of ferric chloride: 115

Fig 4.9: Growth profile of the isolate XI at different pH: 116

Fig 4.10: Growth profile of the isolate XI at different temperature: 116

Fig 4.11(a): Growth profile of the isolate XI in 2% (v/v) diesel supplemented media in presence and absence of P and N: 117

Fig 4.11(b): Growth profile of the isolate XI in 2% (v/v) kerosene supplemented media in presence and absence of P and N: 117

Fig 4.11(c): Growth profile of the isolate XI in 2% (v/v) crude oil supplemented media in presence and absence of P and N: 118
Fig 4.11(d): Growth profile of the isolate XI in 2% (v/v) used engine oil supplemented media in presence and absence of P and N: 118

Fig 4.12(a): Growth profile of the isolate XI in 4% (v/v) used diesel supplemented media in presence and absence of P and N: 119

Fig 4.12(b): Growth profile of the isolate XI in 4% (v/v) kerosene supplemented media in presence and absence of P and N: 119

Fig 4.12(c): Growth profile of the isolate XI in 4% (v/v) crude oil supplemented media in presence and absence of P and N: 120

Fig 4.12(d): Growth profile of the isolate XI in 4% (v/v) used engine oil supplemented media in presence and absence of P and N: 120

Fig 4.13(a): Growth profile of the isolate XI in 6% (v/v) diesel supplemented media in presence and absence of P and N: 121

Fig 4.13(b): Growth profile of the isolate XI in 6% (v/v) kerosene supplemented media in presence and absence of P and N: 121

Fig 4.13(c): Growth profile of the isolate XI in 6% (v/v) crude oil supplemented media in presence and absence of P and N: 122

Fig 4.13(d): Growth profile of the isolate XI in 6% (v/v) used engine oil supplemented media in presence and absence of P and N: 122

Fig 4.14(a): Growth profile of the isolate XI in 8% (v/v) diesel supplemented media in presence and absence of P and N: 123

Fig 4.14(b): Growth profile of the isolate XI in 8% (v/v) kerosene supplemented media in presence and absence of P and N: 123

Fig 4.14(c): Growth profile of the isolate XI in 8% (v/v) crude oil media in presence and absence of P and N: 124
Fig 4.14(d): Growth profile of the isolate XI in 8% (v/v) used engine oil supplemented media in presence and absence of P and N: 124

Fig 4.15: Percentage hydrocarbon degradation after 28 days of incubation in presence and absence of N and P supplements by the isolate XI (Bacillus cereus DRDU1): 125

Fig 4.16: Figure showing biodegradation of used engine oil by the isolate XI (Bacillus cereus DRDU1) in liquid culture after 28 days of incubation: 125

Fig 4.17(a): GLC chromatogram of diesel in the control: 126

Fig 4.17(b): GLC chromatogram of diesel in the test: 126

Fig 4.17(c): GLC chromatogram of kerosene in the control: 127

Fig 4.17(d): GLC chromatogram of kerosene in the test: 127

Fig 4.17(e): GLC chromatogram of crude oil in the control: 128

Fig 4.17(f): GLC chromatogram of crude oil in the test: 128

Fig 4.17(g): GLC chromatogram of used engine oil in the control: 129

Fig 4.17(h): GLC chromatogram of used engine oil in the test: 129

Fig 4.18: E_{24} index of the cell free extract against different petroleum hydrocarbons: 130

Fig 4.19: Figure shows the gradual decrease in contact angle of a drop of used engine oil after 3 and 6 days of incubation in presence of the isolate: 130

Fig 4.20: FTIR absorption analysis of the biosurfactant produced by the isolate XI (B. cereus strain DRDU1) in BH broth. Figure in the inset shows foam formation in the cell free medium: 131
Fig 4.21: Gel image shows amplification of sfp gene (650 bp) isolated from isolate XI against 100 bp step up ladder: 132

Fig 4.22: Data generated by forward and reverse primers: 132

Fig 4.23: Microbial BLAST data (alignment view using combination of NCBI GenBank) of the sfp gene isolated from the isolate XI (Bacillus cereus DRDU1): 133

Fig 4.24: Phylogenetic tree of the amplified gene sequence from the isolate Bacillus cereus DRDU1 (isolate XI) with ten most closely related strains as per microbial BLAST results: 134

Fig 4.25: Phylogenetic tree showing evolutionary relatedness of the amplified sfp gene sequence of Bacillus cereus DRDU1 (isolate XI) with ten Bacillus cereus sfp gene sequences retrieved from NCBI database: 134

Fig 4.26: Phylogenetic tree showing evolutionary relatedness of the hypothetical sfp amino acid sequence of Bacillus cereus DRDU1 with ten Bacillus cereus sfp amino acid sequences translated by MEGA6 software: 135

Fig 4.27: Hypothetical amino acid sequence of sfp gene (partial) (GenBank accession: KU721839) of the isolate XI (Bacillus cereus DRDU1) translated by ExPASy Bioinformatics Resource Portal: 135

Fig. 4.28: Form left, the 1st well shows the DNA bands produced by 1 kb step up DNA ladder. The 2nd well shows 12 kb plasmid band of the bacterial isolate XI (control). Absence of plasmid band in well no. 3 indicates complete curing of plasmid: 136
Fig 4.29: Percentage hydrocarbon degradation by the wild type strain (isolate XI) and plasmid cured strain after 28 days of incubation at 135 rpm and 37°C at 2% (v/v) substrate concentration:

Fig 4.30(a): GLC chromatogram of diesel in the control:

Fig 4.30(b): GLC chromatogram of diesel in the test (degradation by plasmid cured strain):

Fig 4.30(c): GLC chromatogram of kerosene in the control:

Fig 4.30(d): GLC chromatogram of kerosene in the test (degradation by plasmid cured strain):

Fig 4.30(e): GLC chromatogram of crude oil in the control:

Fig 4.30(f): GLC chromatogram of crude oil in the test (degradation by plasmid cured strain):

Fig 4.30(g): GLC chromatogram of used engine oil in the control:

Fig 4.30(h): GLC chromatogram of used engine oil in the test (degradation by plasmid cured strain):