CONTENTS

- List of tables i-iv
- List of figures v-x
- List of abbreviations xi-xiii

CHAPTER-1: INTRODUCTION 1-10

1.1 Composition of petroleum oil: 3-4

1.2 Petroleum oil pollution, environment and health: 4-5

1.3 Countermeasures for oil pollution: 5

1.3.1 Physical methods: 5

1.3.2 Chemical methods: 6

1.3.3 Biological methods: 6-8

1.3.4 Biosurfactants: 8

1.4 Aims and objectives: 8-10

CHAPTER-2: REVIEW OF LITERATURE 11-40

2.1 Petroleum hydrocarbon contaminants in the environment: 11-13

2.2 Microbial degradation of petroleum hydrocarbon: 14
2.2.1. Enzymatic pathways: 14-16

2.2.2 Biosurfactant in petroleum degradation: 17-18

2.3 Microorganisms in petroleum degradation and their sources: 19-23

2.4 Surfactant producing petroleum hydrocarbon degraders: 23-25

2.5 Microbial consortia in hydrocarbon degradation: 26-28

2.6 Hydrocarbon degradation under stress condition: 28-30

2.7 Optimization of growth media for efficient hydrocarbon degradation: 30-32

2.8 Molecular characterization of hydrocarbon degrading microorganisms: 33-34

2.9 Genes involved in petroleum degradation: 34-36

2.10 Genes involved in surfactant production: 36-37

2.11 Role of plasmid and genomic DNA in hydrocarbon degradation: 38-39

2.12 Genomic DNA encoded genes in hydrocarbon degradation: 39-40

2.13 Commercially available bioremediators: 40

CHAPTER-3: MATERIALS AND METHODS 41-62

3.1 Chemicals: 41

3.2 Sample collection: 41

3.3 Isolation and screening of hydrocarbon degrading microorganisms: 41-42
3.4 Colony characterization of the isolates: 42
3.5 Gram staining of the isolates: 42
3.6 Catalase test: 42
3.7 Screening of most potential isolate: 43-44
3.8 Chemotaxis assay of the most potential isolate: 44
3.9 Hydrophobicity assay of the isolate: 44-45
3.10 Identification of the most potential isolate: 45
3.10.1 Microscopic examination: 45-46
3.10.2 Biochemical characterization: 46-47
3.10.3 Molecular identification of the isolate: 48
3.10.3.1 Extraction of genomic DNA: 48
3.10.3.2 Amplification of 16S rDNA: 48-49
3.10.3.3 Phylogenetic analysis: 49
3.11 Stress tolerance assay of the isolate: 49
3.11.1 Salt tolerance test: 49-50
3.11.2 Osmotic tolerance test: 50
3.11.3 Relative Humidity (R.H.) tolerance test: 50-51
3.11.4 Determination of thermal death point (TDP) of the isolate:

3.12 Growth optimization of the isolate in different hydrocarbon sources (Crude oil, used engine oil, kerosene and diesel):

3.12.1 Preparation of starter culture:

3.12.2 Optimization of the growth conditions (pH, temperature and salt concentration) for the bacterial isolate in BH broth:

3.12.3 Evaluation of growth pattern of the isolate at different concentrations of petroleum hydrocarbon, in presence and absence of external N and P supplements:

3.13 Determination of hydrocarbon degradation:

3.13.1 Gravimetric method:

3.13.2 GLC analysis:

3.14 Production and recovery of biosurfactant:

3.15 Characterization of the biosurfactant:

3.15.1 Foaming:

3.15.2 Determination of emulsification index:

3.15.3 Drop collapse assay:

3.15.4 Contact angle determination:
3.15.5 Biochemical characterization of the biosurfactant: 58

3.15.6 Fourier transform infra red (FTIR) spectra analysis: 58

3.16 Molecular characterization of the most potential isolate: 58

3.16.1 Amplification and sequencing of probable gene(s) responsible for the production of Biosurfactant by the isolate: 58-59

3.16.2 In silico sequence analysis: 60

3.16.3 Plasmid curing studies of the isolate: 60-61

3.17 Statistical Analysis: 62

CHAPTER-4: RESULTS 63-140

4.1 Isolation and screening of hydrocarbon degrading microorganisms from automobile engine: 63

4.1.1 Screening of the most potential isolate: 63

4.1.2 Colony morphology of the most potential isolate: 63

4.2 Chemotaxis assay of the isolate: 64

4.3 Hydrophobicity assay of the isolate: 64

4.4 Morphological and biochemical characterization of the most potential isolate XI: 64

4.4.1 Morphological characterization of the isolate XI: 64
4.4.2 Biochemical characterization of the most potential isolate XI: 64

4.5 Molecular identification of the isolate: 64-65

4.6 Stress tolerance assay of the isolate: 65

4.6.1 Salt tolerance assay: 65

4.6.2 Osmotic tolerance assay: 65

4.6.3 Humidity tolerance assay: 66

4.6.4 Thermo-tolerance assay: 66

4.7 Growth optimization of the isolate XI: 66

4.7.1 Media components optimization: 66

4.7.2 Optimization of growth condition: 67

4.8 Evaluation of growth pattern of the isolate at different concentrations of petroleum hydrocarbon, in presence and absence of external N and P supplements: 67

4.8.1 Growth profile at 2% (v/v) hydrocarbon supplemented media in absence of P and N: 67-68

4.8.2 Growth profile at 2% (v/v) hydrocarbon supplemented media in presence of P and N: 68
4.8.3 Growth profile at 4% (v/v) hydrocarbon supplemented media in absence of P and N: 68

4.8.4 Growth profile at 4% (v/v) hydrocarbon supplemented media in presence of P and N: 69

4.8.5 Growth profile at 6% (v/v) hydrocarbon supplemented media in absence of P and N: 69

4.8.6 Growth profile at 6% (v/v) hydrocarbon supplemented media in presence of P and N: 69-70

4.8.7 Growth profile at 8% (v/v) hydrocarbon supplemented media in absence of P and N: 70

4.8.8 Growth profile at 8% (v/v) hydrocarbon supplemented media in presence of P and N: 70

4.9 Determination of percentage hydrocarbon degradation: 70-71

4.10 Characterization of the biosurfactant produced by the isolate: 71

4.10.1 Determination of foaming percentage and E_{24} index: 71-72

4.10.2 Drop collapse and contact angle inhibition assay: 72

4.10.3 Biochemical and FTIR analysis of the surfactant: 72

4.11 Characterization of sfp, $sfpO$, and $arfA$ genes in the genomic DNA of the isolate: 72-73
4.11.1 Plasmid curing studies of the isolate: 73-74

4.12 Comparison of percentage hydrocarbon degradation by the wild type and plasmid cured isolate XI: 74

CHAPTER-5: DISCUSSIONS 141-150

CONCLUSIONS: 151-152

REFERENCES: 153-191

PUBLICATIONS:

Appendix-I: Detailed chromatograms of hydrocarbon degradation carried out by the isolate XI (*Bacillus cereus* DRDU1) in presence of plasmid: I-XIV

Appendix-II: Detailed chromatograms of hydrocarbon degradation carried out by the plasmid cured strain: XV-XXVIII