LIST OF FIGURES

1.1 Plant Derived Apocarotenoid Products ... 4
1.2 Different Stages of Bixa orellana. a) Whole tree b) Leaves c) Young Fruit Bunch d) Flower with Young Fruit Bunch ... 5
1.3 Structure of Bixin .. 6
2.1 Structure of Carotenoids .. 9
2.2 Carotenoid Biosynthesis Pathway .. 14
2.3 CCD and NCEDs Responsible for the Production of Apocarotenoids 22
4.1 Presence of Pigment in Different Part of Leaves. a-d. Adaxial and Abaxial Surface, e. Midrib Region, f. Petiole, g. Dry Leaves ... 54
4.2 HPLC Chromatogram of Bixin Pigment from (a) Seeds and (b) Leaves, which showed Retention Time at 22.6 min in Seeds and 24 min in Leaves 55
4.3 FT-IR Spectrum of Bixin Pigment from Both (a) Leaves and (b) Seeds 56
4.4 1H NMR Spectrum of Bixin Pigment from Both Seeds and Leaves 57
4.5 GC-MS Spectrum of Bixin Pigment from Both Seeds and Leaves 58
4.6 Fluorescence Emission Spectra of BSA with various Concentrations of Bixin. The Concentrations of the Compounds are 0-10 µm. Dotted Lines Represents Free Bixin .. 59
4.7 Stern-volmer plots for the fluorescence quenching of various concentration of (a) bixin with BSA. Double logarithmic plot for the fluorescence quenching of (c) bixin with BSA. .. 61
4.8 Stern-volmer Plots for the Fluorescence Quenching of Various Concentration of Bixin with BSA at (a) 298 (b) 310 and (c) 313 K. Double Logarithmic Plot for the Fluorescence Quenching of Bixin with BSA at (d) 298 (e) 310 and (f) 313 K. 62
4.9 Three Dimensional Fluorescence Spectra and Contour Map of (a,b) BSA Alone, (c,d) Bixin with the Presence and Absence of BSA................................. 64
4.10 Circular Dichroism Spectra of the Bixin with BSA. Bixin Concentration 1, 2 and 10 µm Respectively. Dotted Line represents the Bixin Value Alone........... 65
4.11 Surrounding Amino Acids around Bixin .. 68

4.14 Phylogenetic Tree Analysis was Constructed based on Sequence Similarity of CCD4 Genes .

4.15 Structural Analysis of CCD Genes to Detect the Exon and Intron Region.

4.16 Modelled 3D Structure of B. Orellana CCD4 Gene Comparison with Crocus sativus (CsCCD4a and b).

4.17 Structure map of the plant expression vector pCAMBIA 1301:CCD4a and the reporter genes used for transformation experiments.

4.18 (a) Confirmation by Five Randomly Selected Colonies after Transformation. Lane 1:1kb Ladder, Lane 2-6: Transformed Colonies, (b) Transient GUS Gene Expression Analysis. (1) Non-Transformed Explant and (3,5) Non Transformed 3 Weeks Old Calli. (2) Stable Expression of Transformed Explants , (4,6) Stable Expression of 3 Weeks Old Calli, Showing GUS Expression in Following Co–Cultivated in Presence of 100 µM acетосирингоне. (c) PCR amplification of partial hptII gene. 1.100 bp ladder, 2.407 Amplicon of Partial hptII Gene. (d) PCR Amplification of GUS Gene. Lane 1: 100 bp Ladder, Lane 2: 589 bp Amplicon of Partial GUS Gene. (e) BoCCD4 Expression Profile Obtained for B.orellana Callus. RT-PCR Analysis was carried out with CCD4 and 18S rRNA Gene. Lane 1: 100 bp ladder, Lane 2: Amplification of Specific CCD4 gene and Amplification of 18S rRNA.

4.19 Transient Expression of GFP Gene a,c) Without Agro-Infection hypocotyls ; b,d) 2 Days after Agro-Infection. e) Leaf without Agro-Infection ; f) 2 Days after Agro-Infection in Leaf; g) Root without Agro-Infection; h) Root with 2 Days after Agro-Infection.

4.20 The Effects of UV-B and UV-C Radiation on the B. orellana seedlings. a) Control, b) UV-B, c) UV-C, All Microscopic Images was Obtained from the Abaxial Side.
4.21 The Effects of UV-B and UV-C Radiation on the B. orellana Seedlings. a) Control, b) UV-B, c) UV-C. All SEM Images were Obtained from Abaxial Side (Scale bar for a) 10 µm, b) 20 µm, c) 20 µm 4.5.2 Photosynthetic Pigment Analysis in B. orellana Leaves ... 82
4.22 Effect of UV-B and UV-C Treatments on Different Antioxidative Enzymes a) POD, b) CAT, c) SOD of B. orellana. The Data is Represented as Mean ± SD. 84
4.23 The Effects of UV-B and UV-C Treatment on the Expression of a) DXS, b) PSY, c) PDS, d) ε-LCY e) β-LCY, f) CMT, g) ADH, h) LCD i) CCD Genes in B. orellana Leaves. The Transcripts were Detected Through RT-PCR using Gene-Specific Primers. An 18S rRNA was Included as a Control. The Treatments Included a Control (no stress) and UV B and UV C Administration at 5 Days on 1 hour. The Data are presented as the Means ± Standard deviation (SD). A Completely Randomized Design was utilized. The Data were Subjected to Analysis of Variance (ANOVA), and the Mean Comparison (Tukey test at P<0.05) was Performed Using OriginPro 8 Software. The Data Represent the Means ± Standard Deviation. Different codes Denote Significant Differences among Treatments (P≤0.05). ... 86
4.24 Co-Expression Network Analysis of Related Target Genes. 87
4.25 Effect of Salt Stress (0, 25 mM, 50 mM, 75 mM, 100 mM) on Different Antioxidative Enzymes Activities a) CAT, b) SOD and c) POD of B. orellana. The Data is Represented as Mean ± SD. ... 90
4.26 The Effects of Salt Stress Treatment on the Expression of a) DXS, b) PSY, c) PDS, d) ε-LCY e) β-LCY, f) CMT, g) ADH, h) LCD i) CCD Genes in B. orellana Leaves. The Transcripts were Detected Through RT-PCR using Gene-Specific Primers. An 18S rRNA was Included as a Control. The Treatments Included a Control (no stress, Control) and Different Concentration (25 mM, 50 mM, 75 mM, 100 mM). The Data are presented as the Means ± Standard Deviation (SD). A Completely Randomized Design was utilized. The Data were Subjected to Analysis of Variance (ANOVA), and the Mean Comparison (Tukey test at P<0.05) was Performed using OriginPro 8 Software. The Data Represent the Means ± Standard deviation. Different Codes Denote Significant Differences among Treatments (P≤0.05) ... 92
4.27 Co-Expression Network Analysis of Related Target Genes. 93
Fig. 4.28 The Multiple sequence alignment of the sequence of BSA (Bovine serum Albumin) and HSA (Human Serum Albumin) using Clustal Omega 95