STUDIES ON ANTIMICROBIAL ACTIVITY AND ISOLATION OF
ANTIMICROBIAL PHYTOPHARMACEUTICALS FROM
SALACIA OBLONGA WALL.

Abstract

Salacia oblonga Wall. ex Wight & Arn. belonging to the family *celastraceae* is a large woody climber distributed in Sri Lanka and Southern India. The antimicrobial activity of *S. oblonga* was evaluated by extracting the aerial and root parts of plants in different solvents e.g., ethyl acetate, chloroform, hexane, petroleum ether, methanol, ethanol, and water alone and also in combination with HCl. The six Gram negative and five Gram positive pathogenic microorganisms were used for the present study. Gram Positive (+ve) *Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Bacillus subtilis & Listeria monocytogenes* (MTCC 1143) and Gram negative (-ve) *Klebsiella pneumonia, Enterobacter aerogenes* (MTCC 111), *Enterobacter cloacae, Pseudomonas aeruginosa, Escherichia coli & Salmonella typhimurium* (MTCC 98).

Extracts of aerial and root parts of *S. oblonga* had exhibited the antimicrobial activity against the different pathogenic organisms. Except for the water, petroleum ether and hexane extracts, all the extracts had significant antimicrobial activity against most of the microorganisms.
tested in the agar well diffusion assay. Antimicrobial activity of *S. oblonga* aerial and root (neutral and acidic) parts extracts and the standard antibiotic amikacin was depicted as the zone of inhibition on agar-well diffusion method. The antimicrobial activity of the extracted aerial and root parts in acidic pH showed good activity compared with neutral pH. The zone of inhibition is high in ethyl acetate aerial acidic (21.67±0.54 mm) & root acidic (21.33±0.58 mm) extract with *K. pneumoniae*. The MICs and MBCs for the EtOAc aerial and root (neutral and acidic) extracts were equal or less to those of positive controls and were in the ranges 0.03 – 5.00 and 0.07– >5.00 mg/ml, respectively. Analysis of ethyl acetate, chloroform, methanol, ethanol, hexane, petroleum ether and water extracts of *S. oblonga* by GC-MS (Gas chromatography Mass spectrum) revealed the following compounds [58 (EtOAc), 78 (CHCl₃), 23 (Hexane), 27 (Petroleum ether), 88 (MeOH), 20 (EtOH) and 3 (Water)] identified in the aerial neutral & acidic and root neutral &acidic extracts by comparing their mass spectra (MS) and retention indices (RI) with Wiley library literature data and spectra database. The EtOAc root acidic extract was further divided into four different fractions by column chromatography. Further, the fourth fraction which is showing maximum antimicrobial activity was subjected to LC-MS. In LC-MS (Liquid chromatography mass spectrum) analysis three compounds were identified which are compound 1 γ-sitosterol (mol.
wt. 415.2), compound 2 β-amyrin (mol. wt. 425.3) and acetic acid, 4, 4, 6a, 6b, 8a, 11, 12, 14b-octamethyl-1, 2, 3, 4, 4a, 5, 6, 6a, 6b, 7, 8, 8a, 9, 10, 11, 12, 12a, 14b-octadecahydropicen-3-yl ester (mol. wt. 467.3). The activity of these isolated compounds 1 and 2 has been confirmed in the earlier reports.

The present results in *Salacia oblonga* has brought about the possibility of consumption of plant extracts, which has provided scientific proof for the development of antibacterial products and the treatment of bacterial infections in the future. This study that has provided new scientific information about chemical profiling of its antimicrobial activity. Isolation of bioactive components can reveal the exact potential of *Salacia oblonga* to inhibit pathogenic bacteria and a broad spectrum antimicrobial support in developing herbal formulations in future.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>CHCl₃</td>
<td>Chloroform</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethyl acetate</td>
</tr>
<tr>
<td>GCMS</td>
<td>Gas chromatography – Mass spectroscopy</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HUS</td>
<td>Haemolytic-uremic syndrome</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>LCMS</td>
<td>Liquid chromatography – Mass spectroscopy</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>MBC</td>
<td>Minimum bactericidal concentration</td>
</tr>
<tr>
<td>MHA</td>
<td>Mueller-Hinton Agar</td>
</tr>
<tr>
<td>MHB</td>
<td>Mueller-Hinton broth</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum inhibitory concentration</td>
</tr>
<tr>
<td>MTCC</td>
<td>Microbial Type Culture Collection</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>NA</td>
<td>Nutrient agar</td>
</tr>
</tbody>
</table>
NDM-1 New Delhi metallo-beta-lactamase-1
RP-HPLC Reverse Phase High Performance Liquid Chromatography
SSSS Staphylococcal scalded skin syndrome
TSS Toxic shock syndrome
UTIs Urinary tract infections
UV-VIS Ultraviolet-Visible

SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>l</td>
<td>Litre</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violet</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Structure of Salacinol and Kotalanol
2.1 Main pathway leading to secondary metabolites
2.2 Monoterpenes commonly found in essential oils
2.3 α-Santonin
2.4 Basic structures of some flavonoids
2.5 Structure of some alkaloids
2.6 Salacia oblonga plant growing in its natural habitat in Western Ghats, India
2.7 Ripe fruit of Salacia oblonga
2.8 Chemical constituents of Salacia oblonga (1-14)
4.1 Zone of inhibition exhibited by ethyl acetate aerial neutral and acidic extracts of S. oblonga towards pathogens (Plate 4.2 to 4.12)
4.2 Zone of inhibition exhibited by ethyl acetate root neutral and acidic extracts of S. oblonga towards pathogens (Plate 4.13 to 4.22)
4.3 Antimicrobial activity of Antibiotic (Amikacin) (50 µg/ml) against pathogenic microorganisms
4.4 Antimicrobial activity of S. oblonga aerial neutral EtOAc extracts (mg/ml)
4.5 Antimicrobial activity of S. oblonga EtOAc aerial acidic extract (mg/ml)
4.6 Antimicrobial activity of S. oblonga EtOAc root neutral extract (mg/ml)
4.7 Antimicrobial activity of S. oblonga EtOAc root acidic extract (mg/ml)
4.8 Minimum inhibitory concentration (MIC) of S. oblonga EtOAc extracts
4.9 Minimum bactericidal concentration (MBC) of S. oblonga EtOAc extracts
4.10 GC-MS chromatogram of S. oblonga EtOAc aerial neutral extract
4.11 GC-MS chromatogram of S. oblonga EtOAc aerial acidic extract
4.12 GC-MS chromatogram of S. oblonga EtOAc root neutral extract
4.13 GC-MS chromatogram of S. oblonga EtOAc root acidic extract
4.14 Zone of inhibition exhibited by ethanol aerial and root (neutral & acidic) extracts of S. oblonga towards pathogens (Plate 4.24 to 4.29)
4.15 Antimicrobial activity of S. oblonga ethanol aerial neutral extract (mg/ml)
4.16 Antimicrobial activity of S. oblonga ethanol aerial acidic extract (mg/ml)
4.17 Antimicrobial activity of S. oblonga ethanol root neutral extract (mg/ml)
4.18 Antimicrobial activity of *S. oblonga* ethanol root acidic extract (mg/ml)
4.19 Minimum inhibitory concentration (MIC) of *S. oblonga* ethanol extracts
4.20 Minimum bactericidal concentration (MBC) of *S. oblonga* chloroform extracts
4.21 GC-MS chromatogram of *S. oblonga* ethanol aerial neutral extract
4.22 GC-MS chromatogram of *S. oblonga* ethanol aerial acidic extract
4.23 GC-MS chromatogram of *S. oblonga* root ethanol neutral extract
4.24 GC-MS chromatogram of *S. oblonga* root ethanol acidic extract
4.25 Zone of inhibition exhibited by chloroform aerial and root (neutral & acidic) extracts of *S. oblonga* towards pathogens (Plate 4.31 to 4.36)
4.26 Antimicrobial activity of *S. oblonga* chloroform aerial neutral extract (mg/ml)
4.27 Antimicrobial activity of *S. oblonga* chloroform aerial acidic extract (mg/ml)
4.28 Antimicrobial activity of *S. oblonga* chloroform root neutral extract (mg/ml)
4.29 Antimicrobial activity of *S. oblonga* chloroform root acidic extract (mg/ml)
4.30 Minimum inhibitory concentration (MIC) of *S. oblonga* chloroform extracts
4.31 Minimum bactericidal concentration (MBC) of *S. oblonga* chloroform extracts
4.32 GC-MS chromatogram of *S. oblonga* chloroform aerial neutral extract
4.33 GC-MS chromatogram of *S. oblonga* chloroform aerial acidic extract
4.34 GC-MS chromatogram of *S. oblonga* chloroform root neutral extract
4.35 GC-MS chromatogram of *S. oblonga* chloroform root acidic extract
4.36 Zone of inhibition exhibited by methanol aerial and root (neutral & acidic) extracts of *S. oblonga* towards pathogens (Plate 4.38 to 4.43)
4.37 Antimicrobial activity of *S. oblonga* methanol aerial neutral extract (mg/ml)
4.38 Antimicrobial activity of *S. oblonga* methanol aerial acidic extract (mg/ml)
4.39 Antimicrobial activity of *S. oblonga* methanol root neutral extract (mg/ml)
4.40 Antimicrobial activity of *S. oblonga* methanol root acidic extract (mg/ml)
4.41 Minimum inhibitory concentration (MIC) of *S. oblonga* methanol extracts
4.42 Minimum bactericidal concentration (MBC) of *S. oblonga* methanol extracts
4.43 GC-MS chromatogram of *S. oblonga* methanol aerial neutral extract
4.44 GC-MS chromatogram of *S. oblonga* methanol aerial acidic extract
4.45 GC-MS chromatogram of *S. oblonga* methanol root neutral extract
4.46 GC-MS chromatogram of *S. oblonga* methanol root acidic extract
4.47 GC-MS chromatogram of *S. oblonga* hexane aerial neutral extract
4.48 GC-MS chromatogram of *S. oblonga* hexane aerial acidic extract
4.49 GC-MS chromatogram of *S. oblonga* hexane root neutral extract
4.50 GC-MS chromatogram of *S. oblonga* hexane root acidic extract
4.51 GC-MS chromatogram of *S. oblonga* petroleum ether aerial neutral extract
4.52 GC-MS chromatogram of *S. oblonga* petroleum ether aerial acidic extract
4.53 GC-MS chromatogram of *S. oblonga* petroleum ether root neutral extract
4.54 GC-MS chromatogram of *S. oblonga* petroleum ether root acidic extract
4.55 GC-MS chromatogram of *S. oblonga* water aerial neutral extract
4.56 GC-MS chromatogram of *S. oblonga* water root neutral extract
4.57 Ethyl acetate root acidic extract antimicrobial activity of 4th fraction with different concentrations.
4.58 γ – Sitosterol
4.59 β – amyrin
4.60 Acetic acid 4, 4, 6a, 6b, 8a, 11, 12, 14b, - octamethyl-1, 2, 3, 4, 4a, 5, 6, 6a, 6b, 7, 8, 9, 10, 11, 12, 12a, 14b - octadecahydropenic – 3 - yl ester
List of Tables

1.1 Drugs discovery by ethnobotanical leads
2.1 Classification of secondary metabolites
2.2 Cost estimation of plant derived secondary metabolites of commercial importance in pharmaceutical industry
2.3 List of the important secondary metabolites and their mode of action.
2.4 Plant derived ethnotherapeutics and traditional modern medicine
2.5 Some of the important medicinal plants used for major modern drugs for cancer
2.6 Chemical constituents of Salacia oblonga (1-14)
2.7 Common Organic Solvents: Table of Properties
2.8 Antimicrobial activity of medicinal plant species against various pathogens
3.1 Composition of Mueller Hinton Medium
3.2 McFarland Standard (0.5 %) composition
4.1 Antimicrobial activity of S. oblonga aerial and root (neutral & acidic) EtOAc extracts against pathogenic bacteria by agar well diffusion method
4.2 Antimicrobial activity of S. oblonga aerial and root (neutral & acidic) EtOAc extracts with different concentrations against pathogenic bacteria by agar well diffusion method
4.3 MIC and MBC of S. oblonga aerial and root (acidic & neutral) ethyl acetate extracts against health damaging bacteria
4.4 Content and composition of compounds in the ethyl acetate extract of Salacia oblonga aerial (neutral and acidic), as analyzed by GCMS
4.5 Content and composition of compounds in the ethyl acetate extract of Salacia oblonga root (neutral and acidic), as analyzed by GCMS
4.6 Content, group composition and biological activities of ethyl acetate aerial and root (neutral & acidic) extracts of S. oblonga.
4.7 Antimicrobial activity of S. oblonga aerial and root (neutral & acidic) ethanol extracts against pathogenic bacteria by agar well diffusion method
4.8 MIC and MBC of S. oblonga aerial and root (acidic & neutral) ethanol extracts against health damaging bacteria
4.9 Content and composition of compounds in the ethanol extract of *S. oblonga* aerial (neutral and acidic), as analyzed by GC – MS

4.10 Content and composition of compounds in the ethanol extract of *S. oblonga* root (neutral and acidic), as analyzed by GC - MS

4.11 Content, composition and biological activity of ethanol aerial and root (neutral & acidic) extracts of *S. oblonga*.

4.12 Antimicrobial activity of *S. oblonga* aerial and root (neutral & acidic) chloroform extracts against pathogenic bacteria by agar well diffusion method

4.13 MIC and MBC of *S. oblonga* aerial and root (acidic & neutral) chloroform extracts against health damaging bacteria

4.14 Content and composition of compounds in the chloroform extract of *S. oblonga* aerial (neutral and acidic), as analyzed by GC - MS

4.15 Content and composition of compounds in the chloroform extract of *S. oblonga* root (neutral and acidic), as analyzed by GC - MS

4.16 Content, group composition and biological activities of chloroform aerial and root (neutral & acidic) extracts of *S. oblonga*.

4.17 Antimicrobial activity of *S. oblonga* aerial and root (neutral & acidic) methanol extracts against pathogenic bacteria by agar well diffusion method

4.18 MIC and MBC of *S. oblonga* aerial and root (acidic & neutral) methanol extracts against health damaging bacteria

4.19 Content and composition of compounds in the methanol extract of *S. oblonga* aerial (neutral and acidic), as analyzed by GC – MS

4.20 Content and composition of compounds in the methanol extract of *S. oblonga* root (neutral and acidic), as analyzed by GC - MS

4.21 Content, group composition and biological activities of methanol aerial and root (neutral & acidic) extracts of *S. oblonga*

4.22 Content and composition of compounds in the hexane extract of *S. oblonga* aerial (neutral and acidic), as analyzed by GC - MS
4.23 Content and composition of compounds in the hexane extract of *S. oblonga* root (neutral & acidic), as analyzed by GC - MS

4.24 Content and composition of compounds in the petroleum ether extract of *S. oblonga* aerial (neutral and acidic), as analyzed by GC - MS

4.25 Content and composition of compounds in the petroleum ether extract of *S. oblonga* root (neutral and acidic), as analyzed by GC – MS

4.26 Content and composition of compounds in the water extract of *S. oblonga* aerial and root (neutral and acidic), as analyzed by GC – MS
List of Culture Plates

2.1 *Bacillus subtilis*
2.2 *Enterococcus faecalis*
2.3 *Staphylococcus aureus*
2.4 *Staphylococcus epidermidis*
2.5 *Listeria monocytogenes*
2.6 *Enterobacter aerogenes*
2.7 *Enterobacter cloacae*
2.8 *Escherichia coli*
2.9 *Klebsiella pneumoniae*
2.10 *Pseudomonas aeruginosa*
2.11 *Salmonella typhimurium*

4.1 Amikacin (positive control) ethyl acetate solvent neutral &
solvent with acidic (negative control)
4.2 EtOAc aerial *S. aureus* (Neutral & Acidic)
4.3 EtOAc aerial *E. coli* (Neutral & Acidic)
4.4 EtOAc aerial *K. pneumoniae* (Acidic & Neutral)
4.5 EtOAc aerial *S. epidermidis* (Neutral & Acidic)
4.6 EtOAc aerial *E. aerogenes* (Neutral & Acidic)
4.7 EtOAc aerial *S. typhi* (Neutral & Acidic)
4.8 EtOAc aerial *E. faecalis* (Neutral & Acidic)
4.9 EtOAc aerial *L. monocytogenes* (Neutral & Acidic)
4.10 EtOAc aerial *B. subtilis* (Neutral & Acidic)
4.11 EtOAc aerial *E. cloacae* (Neutral & Acidic)
4.12 EtOAc aerial *P. aeruginosa* (Neutral & Acidic)
4.13 EtOAc root *E. faecalis* (Acidic & Neutral)
4.14 EtOAc root *K. pneumoniae* (Acidic & Neutral)
4.15 EtOAc root *E. coli* (Neutral & Acidic)
4.16 EtOAc root *E. cloacae* (Acidic & Neutral)
4.17 EtOAc root *S. typhi* (Neutral & Acidic)
4.18 EtOAc root *S. epidermidis* (Neutral & Acidic)
4.19 EtOAc root *E. aerogenes* (Neutral & Acidic)
4.20 EtOAc root *B. subtilis* (Acidic & Neutral)
4.21 EtOAc root *P. aeruginosa*
4.22 EtOAc root *S. aureus*
4.23 Amikacin (positive control); ethanol solvent neutral solvent
with acidic (negative control)
4.24 Ethanol aerial *E. cloacae* (Neutral & acidic)
4.25 Ethanol aerial *S. aureus* (Neutral & acidic)
4.26 Ethanol root *E. cloacae* (Neutral & acidic)
4.27 Ethanol root *S. aureus* (Neutral & acidic)
4.28 Ethanol aerial *P. aeruginosa* (Neutral & acidic)
4.29 Ethanol root *P. aeruginosa* (Neutral & acidic)
4.30 Amikacin (positive control); chloroform solvent neutral & solvent with acidic (negative control)
4.31 Chloroform root *E. aerogenes* (Acidic & Neutral)
4.32 Chloroform aerial *E. aerogenes* (Acidic & Neutral)
4.33 Chloroform aerial *S. aureus* (Acidic & neutral)
4.34 Chloroform root *S. aureus* (Acidic & neutral)
4.35 Chloroform aerial *L. monocytogenes* (Acidic & neutral)
4.36 Chloroform aerial *L. monocytogenes* (Acidic & neutral)
4.37 Amikacin (positive control); methanol solvent neutral & solvent with acidic (negative control)
4.38 Methanol aerial methanol *S. aureus* (Neutral & acidic)
4.39 Methanol root methanol *S. aureus* (Neutral & acidic)
4.40 Methanol aerial *E. aerogenes* (Neutral & acidic)
4.41 Methanol root *E. aerogenes* (Neutral & acidic)
4.42 Methanol aerial *P. aeruginosa* (Acidic & neutral)
4.43 Methanol root *P. aeruginosa* (Acidic & neutral)
4.44 Fraction 1 (EtOAc root acidic extract)
4.45 Fraction 2 (EtOAc root acidic extract)
4.46 Fraction 3 (EtOAc root acidic extract)
4.47 Fraction 4 (EtOAc root acidic extract)