CHAPTER 3

Dichromatic polynomial of product digraphs

3.1 Introduction

An interesting notion is that the dichromatic polynomial of a digraph. For an arc $a = uv$ of a digraph D, $D.a$ is obtained from D by identifying the vertices u and v, is called the contraction of a. For a digraph D and positive integer λ, the function $P(D; \lambda)$ is defined to be the number of ways of colouring D using the λ colours. We recall the definition of Cartesian and tensor product of digraphs. We write $u \rightarrow v$ to denote that there is an arc from u to v in a digraph. The Cartesian product of the digraphs D_1 and D_2, denoted by $D_1 \square D_2$, has the vertex set $V(D_1 \square D_2) = V_1 \times V_2$ and $(u_1, v_1) \rightarrow (u_2, v_2)$ in $D_1 \square D_2$ if and only if, either $u_1 = u_2$ in D_1 and $v_1 \rightarrow v_2$ in D_2 or $u_1 \rightarrow u_2$ in D_1 and $v_1 = v_2$ in D_2. The tensor product of the digraphs D_1 and D_2, denoted by $D_1 \times D_2$, has the vertex set $V(D_1 \times D_2) = V_1 \times V_2$ and $(u_1, v_1) \rightarrow (u_2, v_2)$ in $D_1 \times D_2$ if and only if, $u_1 \rightarrow u_2$ in D_1 and $v_1 \rightarrow v_2$ in D_2. In this chapter, we derive exact dichromatic polynomial for some digraphs. We prove that the dichromaticity of the cartesian product of any two digraphs is the maximum of the dichromaticity of two digraphs and the dichromaticity of the tensor product of
any two digraphs is the minimum of the dichromaticity of two digraphs. Contents of
this chapter have been accepted for publication in [32].

3.2 Dichromatic polynomial

In this section, we obtain some results on dichromatic polynomial of digraphs.

Theorem 3.2.1. A digraph D on n vertices is acyclic if and only if $P(D; \lambda) = \lambda^n$.

Proof. Since D is acyclic, by Theorem 2.2.5, $\chi_d(D) = 1$. Therefore, each vertex has λ choices. Hence $P(D; \lambda) = \lambda^n$. Conversely, let $P(D; \lambda) = \lambda^n$. This implies that all the vertices of D are assigned the same colour. Therefore $\chi_d(D) = 1$. By Theorem 2.2.5, D is acyclic.

Corollary 3.2.2. $P(P_n; \lambda) = \lambda^n$.

Proof. Since $\chi_d(P_n) = 1$, there are λ choices for each vertex. Therefore

$P(P_n; \lambda) = \lambda^n$.

Corollary 3.2.3. $P(S_n; \lambda) = \lambda^n$.

Proof. Since $\chi_d(S_n) = 1$, there are λ choices for each vertex. Therefore

$P(S_n; \lambda) = \lambda^n$.

Corollary 3.2.4. $P(C_n; \lambda) = \lambda^n - \lambda$.

3.2 Dichromatic polynomial

Proof. Since $\chi_d(C_n) = 2$, all the vertices are not assigned the same colour, at least one of the vertices must be assigned distinct colour. Therefore, we eliminate λ choices from the total number of choices. Hence $P(C_n; \lambda) = \lambda^n - \lambda$.

Corollary 3.2.5. $P(K^*_n; \lambda) = \lambda(\lambda - 1)(\lambda - 2) \cdots (\lambda - (n - 1))$.

Proof. Since each vertex is assigned distinct colours, $P(K^*_n; \lambda) = \lambda(\lambda - 1)(\lambda - 2) \cdots (\lambda - (n - 1))$.

Ararat Harutyunyan has proved the following theorem as a recurrence formula in his dissertation [82].

Theorem 3.2.6. Let C be a directed cycle in a digraph D such that no edges of C appear in any other cycle of D. Then

$$P(D; x) = P(D - E(C); x) - P(D/C; x),$$

where D/C is the digraph obtained from D by deleting $E(C)$ and identifying all vertices of C.

Here we derive exact dichromatic polynomial of unicyclic digraph.

Theorem 3.2.7. If D is an unicyclic digraph of length r, then $P(D; \lambda) = \lambda^n - \lambda^{n-r+1}$.

Proof. Let D be a unicyclic digraph with the directed cycle C of length r (see Figure 3.1). As there are λ colours, the number of ways to colour the cycle C is λ^r. All the vertices of the cycle C cannot be assigned the same colour, therefore we can eliminate λ choices from the total number of choices. So, the number of colourings for the...
directed cycle is $\lambda^r - \lambda$. Now, the remaining vertices of the digraph which is not in C can be coloured in λ^{n-r} ways. Hence the total number of different colourings of D is equal to $\lambda^n - \lambda^{n-r+1}$. \hfill \Box

Theorem 3.2.8. If D is a unicyclic digraph, a is an arc of D and C be the unique directed cycle in D, then

$$P(D - a; \lambda) = \begin{cases} P(D; \lambda), & \text{if } a \notin A(C) \\ \lambda^n, & \text{if } a \in A(C) \end{cases}$$

Proof. Suppose $a \notin A(C)$. Every colouring of $D - a$ is a colouring of D whether the end vertices of a are assigned the same colour or different colours. Hence $P(D - a; \lambda) = P(D; \lambda)$. Let a be an arc in C. $D - a$ becomes acyclic, then by Theorem 2.2.5, $\chi_d(D - a) = 1$. Clearly, $P(D - a; \lambda) = \lambda^n$. \hfill \Box

![Figure 3.1 Unicyclic digraph](image)

Corollary 3.2.9. Let D be an unicyclic digraph and C be the unique cycle. If a is an arc of C, then the number of colourings which are colourings of $D - a$ but not for D is λ^{n-r+1}.

Proof. By Theorem 3.2.8, $P(D - a; \lambda) = \lambda^n$, when a is in $A(C)$. Therefore, the number of colourings which are colourings of $D - a$ but not for D is equal to $\lambda^n - \{\lambda^n - \lambda^{n-r+1}\}$.
3.2 Dichromatic polynomial

$$= \lambda^{n-r+1}. \square$$

Theorem 3.2.10. Let D be a digraph and $a=uv$ be an arc in D. Then

$$P(D; \lambda) = \begin{cases} P(D-a; \lambda), & \text{if } a \notin A(D) \\ P(D-a; \lambda) + P(D.a; \lambda), & \text{if } a \in A(D) \text{ and } u, v \text{ must be assigned distinct colours in } D-a. \end{cases}$$

Proof. Let $a=uv$ be an arc which is not in any directed cycle. If u and v are assigned the different colours in $D-a$, then $P(D; \lambda) = P(D-a; \lambda)$. Suppose u and v are assigned the same colour say c_1 in $D-a$. Let $V_1 = \{ v \in V / v \text{ has the colour } c_1 \}$. Let H be the subdigraph induced by V_1. By Theorem 2.2.5, $\chi_d(H) = 1$. In this case, $P(D; \lambda) = P(D-a; \lambda)$. Let $a=uv$ be an arc in directed cycle. We partition all the colourings of D as two sets as follows:

(i) Colourings where the end vertices u and v are assigned the same colour. (ii) Colourings where the end vertices u and v are assigned different colours. The number of colourings where u and v are assigned the same colour is equal to $P(D.a; \lambda)$. The number of colourings where u and v are assigned different colours is equal to $P(D-a; \lambda)$ where the end vertices u and v in $D-a$ are assigned distinct colours. Hence $P(D; \lambda) = P(D-a; \lambda) + P(D.a; \lambda)$, where the end vertices in $D-a$ are assigned distinct colours. \(\square\)

Theorem 3.2.11. Let D be a digraph obtained from k directed cycles C_1, C_2, \ldots, C_k of length r_1, r_2, \ldots, r_k respectively and has a vertex u common to all C_i, $1 \leq i \leq k$. Then

$$P(D; \lambda) \equiv \frac{(\lambda^{r_1} - \lambda)(\lambda^{r_2} - \lambda)\ldots(\lambda^{r_k} - \lambda)}{\lambda^{k-1}}$$

Proof. Without loss of generality, let us choose a directed cycle C_1 of length r_1. The number of colourings of C_1 is $\lambda^{r_1} - \lambda$. Then choose another cycle C_2 of length r_2, the
number of colourings of C_2 is $\lambda^{r_2} - \lambda$. Since u is common to C_1 and C_2, the number of colourings of C_1 and C_2 is $\left(\frac{\lambda^{r_1} - \lambda}{\lambda}\right) \text{ and } \left(\frac{\lambda^{r_2} - \lambda}{\lambda}\right)$ (see Figure 3.2).

![Figure 3.2 A vertex is common to two directed cycles](image)

As there are λ - choices, the number of colourings of C_1 and C_2 is $\lambda\left(\frac{\lambda^{r_1} - \lambda}{\lambda}\right)\left(\frac{\lambda^{r_2} - \lambda}{\lambda}\right)$. Inductively, the number of colourings of $C_1, C_2, C_3, C_4, ..., C_k$ is $\lambda\left(\frac{\lambda^{r_1} - \lambda}{\lambda}\right) \left(\frac{\lambda^{r_2} - \lambda}{\lambda}\right) ... \left(\frac{\lambda^{r_k} - \lambda}{\lambda}\right)$. Hence $P(D; \lambda) = \frac{(\lambda^{r_1} - \lambda)(\lambda^{r_2} - \lambda)...(\lambda^{r_k} - \lambda)}{\lambda^{k-1}}$.

Theorem 3.2.12. Let D be a digraph obtained from k directed cycles $C_1, C_2, ..., C_k$ of length $r_1, r_2, ..., r_k$ respectively and have P_l as a directed path on l vertices common to all C_i, $1 \leq i \leq k$. Then $P(D; \lambda) = (\lambda^l - \lambda)(\lambda^{r_1-l}) \left(\lambda^{r_2-l} \right) ... \left(\lambda^{r_k-l} \right) + \lambda(\lambda^{r_1-l} - 1)(\lambda^{r_2-l} - 1) ... (\lambda^{r_k-l} - 1)$.

Proof. Without loss of generality, let us choose one directed cycle C_1 of length r_1 with common directed path P_l common to all C_i, $1 \leq i \leq k$ (refer Figure 3.3). If all the vertices of P_l are assigned the same colour, then there are $(\lambda^{r_1-l} - 1)$ choices for C_1. Similarly, there are $(\lambda^{r_2-l} - 1)$ colourings for C_2. As there are λ choices, the number of colourings for all C_i in which all the vertices of P_l are assigned the same colour is
3.2 Dichromatic polynomial

\[\lambda(\lambda^{r_1-1} - 1)(\lambda^{r_2-1} - 1)\ldots(\lambda^{r_k-1} - 1). \]

Figure 3.3 Directed path on \(l \) vertices common to all directed cycles

Now, assume that all the vertices of \(P \) are not assigned the same colour. Then there are \((\lambda^l - \lambda)\) ways to colour the directed path \(P \). The number of possible colouring of \(C_1, C_2, \ldots, C_k \) are \((\lambda^{r_1-1})(\lambda^{r_2-1})\ldots(\lambda^{r_k-1})\). Therefore, the number of colourings of \(D \) is \((\lambda^l - \lambda)(\lambda^{r_1-1})(\lambda^{r_2-1})\ldots(\lambda^{r_k-1})\). Hence the total number of colourings of \(D \) is \((\lambda^l - \lambda)(\lambda^{r_1-1})(\lambda^{r_2-1})\ldots(\lambda^{r_k-1}) + \lambda(\lambda^{r_1-1} - 1)(\lambda^{r_2-1} - 1)\ldots(\lambda^{r_k-1} - 1)\). \(\square \)

Corollary 3.2.13. Let \(D \) be a digraph obtained from \(k \) directed cycles \(C_1, C_2, \ldots, C_k \) of length \(r_1, r_2, \ldots, r_k \) respectively and \(a=uv \) be a common arc to all \(C_i, \ 1 \leq i \leq k \) (see Figure 3.4). Then \(P(D; \lambda) = \lambda(\lambda - 1)(\lambda^{r_1+r_2+\ldots+r_k-2k}) + \lambda(\lambda^{r_1-2} - 1)(\lambda^{r_2-2} - 1)\ldots(\lambda^{r_k-2} - 1). \)

Proof. By Theorem 3.2.12, if both \(u \) and \(v \) are assigned the same colour, then the number of colouring is \(\lambda(\lambda^{r_1-2} - 1)(\lambda^{r_2-2} - 1)\ldots(\lambda^{r_k-2} - 1) \). If two vertices \(u \) and \(v \) are assigned the distinct colours, then the number of colouring of
3.3 Dichromatic number of Cartesian product of digraphs

In this section, we prove results on dichromaticity of Cartesian products of digraphs.

Theorem 3.3.1. Let D_1 and D_2 be any two digraphs. Then

$G(D_1 \square D_2) = G(D_1) \square G(D_2).$

Proof. Let D_1 and D_2 be two digraphs. Obviously, $V(G(D_1 \square D_2)) = V(G(D_1) \square G(D_2))$. We prove that every edge of $G(D_1 \square D_2)$ is an edge of $G(D_1) \square G(D_2)$. Suppose (u_i, v_i) and (u_j, v_j) are adjacent in $G(D_1 \square D_2)$. Here $u_i, u_j \in V(G(D_1))$ and $v_i, v_j \in V(G(D_2))$. Then either $(u_i, v_i) \rightarrow (u_j, v_j)$ or $(u_j, v_j) \rightarrow (u_i, v_i)$ in $D_1 \square D_2$. Without loss of generality, let us assume that $(u_i, v_i) \rightarrow (u_j, v_j)$. This implies that $u_i = u_j$ and $v_i \rightarrow v_j$ or $u_i \rightarrow u_j$ and $v_i = v_j$. So, either v_i and v_j are
adjacent in $G(D_2)$ or u_i and u_j are adjacent in $G(D_1)$. Hence $u_i = u_j$ and v_i is adjacent to v_j or u_i is adjacent to u_j and $v_i = v_j$ in $G(D_1) \square G(D_2)$. Therefore $G(D_1 \square D_2) \subseteq G(D_1) \square G(D_2)$. Next we can prove that every edge of $G(D_1) \square G(D_2)$ is an edge of $G(D_1 \square D_2)$. Let $(u_iv_j, u_kv_l) \in E(G(D_1) \square G(D_2))$. Then either $u_i = u_k$ and v_j is adjacent to v_l or u_i is adjacent to u_k and $v_j = v_l$. This implies $v_j \to v_l$ in D_2 and $u_i \to u_k$ in D_1. These two arcs in $D_1 \square D_2$ are the corresponding edges in $G(D_1) \square G(D_2)$. Therefore $G(D_1) \square G(D_2) \subseteq G(D_1 \square D_2)$. Hence $G(D_1 \square D_2) = G(D_1) \square G(D_2)$.

Lemma 3.3.2. If any two vertices in the directed cycle C of an unicyclic digraph are assigned two different colours, then a colouring is possible in which all the remaining vertices are assigned with any one of the colours.

Proof. Let D be the unicyclic digraph in which any two vertices in the unique directed cycle are assigned two different colours say c_1 and c_2. Let v_i and v_j, $i < j$ be two vertices in the directed cycle C of D. Now, we construct a colour sequence for D, where v_j alone is assigned colour c_2 and all other vertices are assigned the colour c_1. Let the directed cycle C be $v_1v_2...v_rv_1$. Removing all the arcs in the directed cycle C, we get r subdigraphs in which each is acyclic. Moreover, each subdigraph contains only one vertex of C. By Theorem 2.2.5, all the vertices in all subdigraphs are assigned the colour c_1. Let s_k be the colour sequence corresponding to the subdigraph that contains v_k, $k = 1, 2, \ldots, r$. Form a sequence $s_is_{i-1}...s_1s_1s_{r-1}...s_js_{j-1}...s_{i+1}$. This is a colour sequence for D where v_j alone is assigned the colour c_2 and all the other vertices are assigned the colour c_1.

\[\square\]
3.3 Dichromatic number of Cartesian product of digraphs

Theorem 3.3.3. Let D_1 and D_2 be two digraphs. Then

$$\chi_d(D_1 \square D_2) = \max \{ \chi_d(D_1), \chi_d(D_2) \}.$$

Proof. The Cartesian product $D_1 \square D_2$ contains copies of D_1 and D_2 as subdigraphs. So $\chi_d(D_1 \square D_2) \geq \max \{ \chi_d(D_1), \chi_d(D_2) \}$. Let $k = \max \{ \chi_d(D_1), \chi_d(D_2) \}$. To prove the upper bound, we produce a k-colouring of $D_1 \square D_2$ using optimal colourings of D_1 and D_2. Let g be a $\chi_d(D_1)$-colouring of D_1 and $u_1, u_2, ..., u_{n_1}$ be the corresponding colour sequence of D_1. Let h be a $\chi_d(D_2)$-colouring of D_2 and $v_1, v_2, ..., v_{n_2}$ be the corresponding colour sequence of D_2. Define a colouring f of $D_1 \square D_2$ by letting $f(u, v) \equiv [g(u) + h(v)](\text{mod } k)$. Thus f assigns colours to $V(D_1 \square D_2)$ from a set of size k.

Now, we prove that f properly colours $D_1 \square D_2$ corresponding to the sequence

$$(u_1, v_1)(u_2, v_2)(u_3, v_3)...(u_{n_1}, v_{n_1})(u_2, v_1)(u_2, v_1)...(u_2, v_{n_2})...(u_{n_1}, v_1)...(u_{n_1}, v_{n_2}) \quad (3.1)$$

Suppose (u, v) and (u', v') are assigned the same colour and $(u, v) \rightarrow (u', v')$. Then we prove that (u', v') precedes (u, v) in the above sequence (3.1). $(u, v) \rightarrow (u', v')$ implies that either $u = u'$ and $v \rightarrow v'$ or $v = v'$ and $u \rightarrow u'$. Without loss of generality, let $u = u'$ and $v \rightarrow v'$. Now $f(u, v) = f(u', v')$. This implies that $g(u) + h(v) \equiv [g(u') + h(v')](\text{mod } k)$, implies that $h(v) = h(v')$, since $u = u'$ and $h(v), h(v') \leq k$. Therefore v and v' are assigned the same colour. Now v and v' are assigned the same colour and $v \rightarrow v'$. So, v' must precede v in the sequence $v_1, v_2, ..., v_{n_2}$. Hence (u', v') precede (u, v) in (3.1). Similarly, we can discuss the case for $v = v'$ and $u \rightarrow u'$.

Corollary 3.3.4. $\chi_d(P_n \square P_m) = 1$.
3.4 Dichromatic number of tensor product of digraphs

Proof. By Theorems 2.2.5 and 3.3.3, we get the required result.

Corollary 3.3.5. $\chi_d(P_n \square C_m) = 2$.

Proof. The dichromatic number of P_n is one and dichromatic number of C_n is two.

By Theorem 3.3.3, $\chi_d(P_n \square C_m) = 2$.

Corollary 3.3.6. $\chi_d(C_n \square C_m) = 2$.

Proof. Since $\chi_d(C_n) = 2$, this corollary is obvious by Theorem 3.3.3.

Corollary 3.3.7. $\chi_d(D_1 \square D_2) = 2$ if and only if either $\chi_d(D_1) = 2$ and $\chi_d(D_2) \leq 1$ or $\chi_d(D_2) = 2$ and $\chi_d(D_1) \leq 1$.

Proof. Let us assume that $\chi_d(D_1 \square D_2) = 2$. Then either D_1 or D_2 must contain a directed cycle, therefore either $\chi_d(D_1) = 2$ and $\chi_d(D_2) \leq 1$ or $\chi_d(D_2) = 2$ and $\chi_d(D_1) \leq 1$. Converse is obvious.

Corollary 3.3.8. $P((P_n \square P_m); \lambda) = \lambda^n$.

Proof. By Corollary 3.3.4 and by Theorem 3.2.1, we get the required result.

Corollary 3.3.9. $P((P_n \square C_m); \lambda) = P((C_n \square C_m); \lambda) = \lambda^n - \lambda$.

Proof. By Corollaries 3.3.5, 3.3.6 and 3.2.4, we get the required result.
3.4 Dichromatic number of tensor product of digraphs

We begin this section with few observations and prove results on dichromatic number of tensor product of digraphs.

Observation 3.4.1. Let us take two directed cycles of length C_l and C_m such that $l \leq m$. Let $C_l = v_1v_2\ldots v_l$ and $C_m = u_1u_2\ldots u_m$. In tensor product $C_n \times C_m$, there is a unique directed cycle of length $r = \text{lcm}(l, m)$, denoted by $[l, m]$. The cycle is as follows. $(u_1, v_1) \rightarrow (u_2, v_2) \rightarrow (u_3, v_3) \rightarrow \cdots \rightarrow (u_l, v_l) \rightarrow (u_{l+1}, v_1) \rightarrow (u_{l+2}, v_2) \rightarrow \cdots \rightarrow (u_m, v_1)$. For example, in $C_3 \times C_4$, $u_1v_1, u_2v_2, u_3v_3, u_1v_4, u_2v_1, u_3v_2, u_1v_3, u_2v_4, u_3v_1, u_1v_2, u_2v_3, u_3v_4, u_1v_1$ is a directed cycle (see Figure 3.5).

Observation 3.4.2. If l and m are odd positive integer, then $r = [l, m]$ is odd positive integer. If l and m are even positive integer, then $r = [l, m]$ is even positive integer. If
3.4 Dichromatic number of tensor product of digraphs

l is even positive integer and m is odd positive integer, then $r = [l, m]$ is even positive integer.

Lemma 3.4.3. $D_1 \times D_2$ has a directed cycle if and only if both D_1 and D_2 have directed cycle.

Proof. Let $D_1 \times D_2$ has a directed cycle. Let $u_1v_1, u_2v_2, \ldots, u_tv_t$ be a directed cycle. Let us arbitrarily choose any arc from $D_1 \times D_2$. Suppose $u_i v_j \rightarrow u_k v_l$, then $u_i \rightarrow u_k$ in D_1 and $v_j \rightarrow v_l$ in D_2. This is true for all arcs in the directed cycle. This implies that D_1 and D_2 have a directed cycle.

Conversely, let D_1 and D_2 have a directed cycle. Let $u_1u_2 \cdots u_l$ be a directed cycle of length l in D_1 and $v_1v_2 \cdots v_m$ be a directed cycle of length m in D_2. Without loss of generality, let $l \leq m$, by Observation 3.4.1, we get a directed cycle in $D_1 \times D_2$. \hfill \Box

Corollary 3.4.4. $D_1 \times D_2$ has an odd symmetric cycle if and only if both D_1 and D_2 have odd symmetric cycles.

Proof. Let $D_1 \times D_2$ has an odd symmetric cycle. Let $u_1v_1, u_2v_2, \ldots, u_tv_t$ be the odd symmetric cycle. Let us arbitrarily choose any symmetric arc from $D_1 \times D_2$. Suppose u_iv_j is symmetric to u_kv_l, then u_i is symmetric to u_k in D_1 and v_j is symmetric to v_l in D_2. This is true for all the symmetric arcs in the odd symmetric cycle. This implies that D_1 and D_2 have odd symmetric cycles.

Conversely, let D_1 and D_2 have odd symmetric cycles. Let $u_1u_2 \cdots u_l$ be the odd symmetric cycle of length l in D_1 and $v_1v_2 \cdots v_m$ be the odd symmetric cycle
of length m in D_2. Without loss of generality, let $l \leq m$, by Observation 3.4.2, we get an odd symmetric cycle in $D_1 \times D_2$.

Theorem 3.4.5. Let D_1 and D_2 be two digraphs. Then $\chi_d(D_1 \times D_2) \leq \min \{\chi_d(D_1), \chi_d(D_2)\}$.

Proof. Let $V(D_1) = \{u_1, u_2, ..., u_{n_1}\}$, $V(D_2) = \{v_1, v_2, ..., v_{n_2}\}$ and $\chi_d(D_1) = k$. Let g be a k-colouring of D_1. Without loss of generality, let us assume that $u_1, u_2, ..., u_{n_1}$ be the corresponding colour sequence for g. Define a colouring f for $D_1 \times D_2$ such that $f(u, v) = g(u)$. We claim that f is a proper colouring of $D_1 \times D_2$. Consider the sequence

$$(u_1, v_1)(u_1, v_2) \cdots (u_1, v_{n_2})(u_2, v_1)(u_2, v_2) \cdots (u_2, v_{n_2}) \cdots (u_{n_1}, v_1) \cdots (u_{n_1}, v_{n_2}) \quad (3.2)$$

Suppose (u, v) and (u', v') are assigned the same colour and $(u, v) \rightarrow (u', v')$. Clearly u and u' are assigned the same colour, $u \rightarrow u'$ and $v \rightarrow v'$. Here u' precedes u in the colour sequence $u_1, u_2, ..., u_{n_1}$. Hence (u', v') precedes (u, v) in the sequence (3.2). So f is a proper colouring of $D_1 \times D_2$ implying that $\chi_d(D_1 \times D_2) \leq \chi_d(D_1)$. Similarly, $\chi_d(D_1 \times D_2) \leq \chi_d(D_2)$. Hence $\chi_d(D_1 \times D_2) \leq \min\{\chi_d(D_1), \chi_d(D_2)\}$.

Corollary 3.4.6. $\chi_d(D_1 \times D_2) = 1$ if and only if either D_1 or D_2 is acyclic.

Proof. Let us assume that $\chi_d(D_1 \times D_2) = 1$. Then by Theorem 2.2.5, either D_1 or D_2 must be acyclic. Converse is obvious.

Theorem 3.4.7. $\chi_d(D_1 \times D_2) = 2$ if and only if either $\chi_d(D_1) = 2$ and $\chi_d(D_2) \geq 2$ or $\chi_d(D_1) \geq 2$ and $\chi_d(D_2) = 2$.

Proof. Let \(\chi_d(D_1) = 2 \) and \(\chi_d(D_2) \geq 2 \). Then by Theorem 3.4.5, \(\chi_d(D_1 \times D_2) \leq 2 \). We claim that \(\chi_d(D_1 \times D_2) = 2 \). Suppose \(\chi_d(D_1 \times D_2) = 1 \). By Corollary 3.4.6, then there is no directed cycle in \(D_1 \times D_2 \). Since \(\chi_d(D_1) = 2 \) and \(\chi_d(D_2) \geq 2 \), \(D_1 \) and \(D_2 \) have directed cycles. By Lemma 3.4.3, \(D_1 \times D_2 \) also has a directed cycle, a contradiction. Hence \(\chi_d(D_1 \times D_2) = 2 \).

Conversely, let \(\chi_d(D_1 \times D_2) = 2 \). Obviously \(\chi_d(D_1) \) and \(\chi_d(D_2) \geq 2 \). We claim that either \(\chi_d(D_1) \) or \(\chi_d(D_2) = 2 \). Since \(\chi_d(D_1 \times D_2) = 2 \), any one of the conditions stated in the theorem is true. Let \(D_1 \times D_2 \) have directed cycle but no symmetric cycle. By Lemma 3.4.3, both \(D_1 \) and \(D_2 \) have directed cycle and none has symmetric cycle. So, by Theorem 2.2.6, \(\chi_d(D_1) = \chi_d(D_2) = 2 \). Let us assume that \(D_1 \times D_2 \) has only even symmetric cycles (one such symmetric cycle exists) and the set of vertices in the odd or even positions in each symmetric cycle do not form a directed cycle. In case, both \(D_1 \) and \(D_2 \) have odd symmetric cycles, then by Lemma 3.4.4, \(D_1 \times D_2 \) will have an odd symmetric cycle, so that \(\chi_d(D_1 \times D_2) \geq 3 \), a contradiction. So, either \(D_1 \) or \(D_2 \) have only even symmetric cycles. Without loss of generality, let \(D_1 \) have only even symmetric cycles. In case, in all the even symmetric cycles, the set of vertices in the odd or even positions in each symmetric cycles do not form a directed cycle, then \(\chi_d(D_1) = 2 \). Otherwise \(\chi_d(D_1) \geq 3 \). In this case, \(\chi_d(D_2) = 2 \), since \(2 = \chi_d(D_1 \times D_2) = \min \{ \chi_d(D_1), \chi_d(D_2) \} \).

Corollary 3.4.8. \(\chi_d(P_n \times P_m) = 1 \).

Proof. The dichromatic number of path on \(n \) vertices is one. By Theorem 3.4.5,
3.4 Dichromatic number of tensor product of digraphs

corollary is true.

Corollary 3.4.9. $\chi_d(P_n \times C_m) = 1$.

Proof. The dichromatic number of P_n is one and dichromatic number of C_n is two. Therefore, by Theorem 3.4.5, $\chi_d(P_n \square C_m) = 1$.

Corollary 3.4.10. $\chi_d(C_n \times C_m) = 2$.

Proof. The dichromatic number of C_n is two. Hence, by Theorem 3.4.5, corollary is true.

Corollary 3.4.11. $P((P_n \times P_m); \lambda) = P((P_n \times C_m); \lambda) = \lambda^n$.

Proof. By Corollary 3.4.8 and by Theorem 3.2.1, corollary is true.

Corollary 3.4.12. $P((C_n \times C_m); \lambda) = \lambda^n - \lambda$.

Proof. By Corollary 3.4.10 and 3.3.5, corollary is true.

Here we propose the following two open problems based on dichromatic polynomial of digraphs.

Problem 3.4.13. Find dichromatic number of Strong and Lexicographic product of any two digraphs.

Problem 3.4.14. $P(D; \lambda)$ is a monic polynomial of degree n in λ with integer coefficients and constant term zero, in addition, its coefficients alternate in sign and the coefficient of λ^{n-1} is $-m$.