Chapter 1

Preliminaries

In this chapter we collect the basic definitions and results on graphs which are needed for the subsequent chapters.

Definition 1.1. A *graph* G is a finite nonempty set of objects called vertices together with a set of unordered pair of distinct vertices of G called edges. The vertex set and the edge set of G are denoted by $V(G)$ and $E(G)$ respectively. $|V(G)|$ is called the order of G and $|E(G)|$ is called the size of G. If $e = uv$ is an edge of G, we say that u and v are adjacent and u and v are incident with e.

Definition 1.2. The *degree* of a vertex v in a graph G is defined to be the number of edges incident on v and is denoted by $\text{deg}(v)$. A vertex of degree one is called a **pendant vertex**.

Definition 1.3. A graph H is called a *subgraph* of a graph G, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A **spanning subgraph** of G is a subgraph H with $V(H) = V(G)$.
Definition 1.4. A graph is \textit{simple} if it has no loops and no two of its edges join the same pair of vertices.

Definition 1.5. The \textit{neighbourhood} of a vertex \(u \) is the set \(N(u) \) consisting of all vertices \(v \) which are adjacent to \(u \).

Definition 1.6. A graph \(G \) is \textit{regular} of degree \(r \) if every vertex of \(G \) has degree \(r \). Such a graph is called \(r \)-regular graph.

Definition 1.7. A graph \(G \) is \textit{complete} if every pair of its vertices are adjacent. A complete graph on \(n \) vertices is denoted by \(K_n \).

Definition 1.8. The \textit{complement} \(\overline{G} \), of a graph \(G \) is the graph with vertex set \(V(G) \) such that two vertices are adjacent in \(\overline{G} \), if and only if they are not adjacent in \(G \). It is also denoted by \(G^c \).

Definition 1.9. A \textit{bipartite graph} is a graph whose vertex set \(V(G) \) can be partitioned into two subsets \(V_1 \) and \(V_2 \) such that every edge of \(G \) has one end in \(V_1 \) and the other end in \(V_2 \); \((V_1,V_2)\) is called a bipartition of \(G \). If further, every vertex of \(V_1 \) is joined to all the vertices of \(V_2 \), then \(G \) is called a complete bipartite graph. The complete bipartite graph with bipartition \((V_1,V_2)\) such that \(|V_1|=m\) and \(|V_2|=n\) is denoted by \(K_{m,n} \). The graphs \(K_{1,n} \) are called \textit{star graphs}, \(S_n \).

Definition 1.10. Let \(u \) and \(v \) be (not necessarily distinct) vertices of a graph \(G \). A \textit{u-v walk} of \(G \) is a finite, alternating sequence \(u = u_0, e_1, u_1, e_2, u_2, \ldots, e_n, u_n = v \) of vertices and edges beginning with vertex \(u \) and ending with vertex \(v \) such that \(e_i = u_{i-1}u_i, \ i = 1, 2, \ldots, n. \) The number \(n \) is called the
length of the walk. The walk is said to be open if \(u \) and \(v \) are distinct vertices; it is closed otherwise. If \(G \) is simple, a walk \(u_0, e_1, u_1, e_2, u_2, \ldots, e_n, u_n \) is determined by the sequence \(u_0, u_1, \ldots, u_n \) of its vertices and hence we specify this walk by \((u_0, u_1, u_2, \ldots, u_n)\).

Definition 1.11. A walk in which all the edges are distinct is called a **trail**. A walk in which all the vertices are distinct is called a **path**. A closed walk \((u_0, u_1, u_2, \ldots, u_n)\) in which \(u_0, u_1, u_2, \ldots, u_{n-1}\) are distinct is called a **cycle**. A path on \(n \) vertices is denoted by \(P_n \) and a cycle on \(n \) vertices is denoted by \(C_n \).

Definition 1.12. Two vertices \(u \) and \(v \) are **connected** in \(G \), if there is a \((u, v)\) path in \(G \). A graph \(G \) is said to be connected if any two distinct vertices of \(G \) are joined by a path. A maximal connected subgraph of \(G \) is called a **component** of \(G \). Thus a disconnected graph has at least two components.

Definition 1.13. **One point union** of any number of connected graphs is obtained by identifying one vertex from each graph.

Definition 1.14. The join of two graphs \(G_1 \) and \(G_2 \) denoted by \(G_1 + G_2 \) has vertex set \(V = V(G_1) \cup V(G_2) \) and edge set \(E \) consists of edges of \(G_1 \), edges of \(G_2 \) and all edges joining \(V(G_1) \) and \(V(G_2) \).

Definition 1.15. The product \(G_1 \times G_2 \) of two graphs \(G_1 \) and \(G_2 \) has vertex set \(V = V_1 \times V_2 \) where \(V_1 = V(G_1) \) and \(V_2 = V(G_2) \) in which two vertices \((u_1, u_2)\) and \((v_1, v_2)\) are adjacent whenever \(u_1 = v_1 \) and \(u_2 \) is adjacent with \(v_2 \) or \(u_2 = v_2 \) and \(u_1 \) is adjacent with \(v_1 \).
Definition 1.16. **Bistar** is a graph obtained by joining the centres of $K_{1,n}$ and $K_{1,m}$ and is denoted by $B_{n,m}$.

Definition 1.17. The **book** B_n is the graph $S_n \times P_2$ where S_n is the star with $n + 1$ vertices.

Definition 1.18. When n copies of C_m share a common edge, it will form m-gon book of n pages and is denoted by $B(m, n)$.

Definition 1.19. The graph $C_n + K_1$ is called a **wheel graph** and is denoted by W_n.

Definition 1.20. If $e = uv$ is an edge of G and w is not a vertex of G, we say that the edge e is **subdivided**, if it is replaced by the edges uw and wv.

Definition 1.21. For a vertex v of a connected graph G, the **eccentricity** $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the **radius**, $\text{rad} \ G$, and the maximum eccentricity is its **diameter**, $\text{diam} \ G$.

Definition 1.22. A graph is said to be **acyclic** if it has no cycles. A **tree** is a connected acyclic graph.

Definition 1.23. A **shell** $S_{n,n-3}$ of width n is a graph obtained by taking $n - 3$ concurrent chords in a cycle C_n on n vertices. The vertex at which all the chords are concurrent is called **apex**. The two vertices adjacent to the apex have degree 2, apex has degree $n - 1$ and all the other vertices have degree 3.

Definition 1.24. A **multiple shell** $\text{MS}\{n_{t_1}^{t_1}, n_{t_2}^{t_2}, \ldots, n_{t_r}^{t_r}\}$ is a graph formed by t_i shells of width n_i, $1 \leq i \leq r$, which has a common apex. This graph
The multiple shell has \(\sum_{i=1}^{r} t_i(n_i - 1) + 1\) vertices. A multiple shell is said to be balanced with width \(w\) if it is of the form \(\text{MS}\{w'\}\) or \(\text{MS}\{w',(w+1)^s\}\); that is the cycles involved are more or less of the same size. If a multiple shell has \(k\) shells having a common apex, then it is called a \(k\)-tuple shell; a double shell if \(k = 2\), a triple shell if \(k = 3\) etc. Suppose \(S\) is a balanced shell on \(n\) vertices with \(k\) shells having a common apex. If \(n = kt\), then \(S = \text{MS}\{t,(t+1)^{k-1}\}\). On the other hand if \(n = kt + r, r \neq 0\), then \(S = \text{MS}\{(t+1)^{k-r+1},(t+2)^{r-1}\}\).

Definition 1.25. A **snake graph** is formed by taking \(n\)-copies of a cycle \(C_m\) and identifying exactly one edge of each copy to a distinct edge of the path \(P_{n+1}\), which we will call the backbone of the snake. It is denoted by \(T_n^{(m)}\).

Definition 1.26. The graph \(P_n \times P_2\) is called a **ladder**.

Definition 1.27. The graph \(G\) with vertex set \(\{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n\}\) and the edge set \(\{u_iu_{i+1}, v_iv_{i+1}, v_iu_{i+1} : 1 \leq i \leq n-1\}\) \(\cup\) \(\{u_iv_i : 1 \leq i \leq n\}\) is called a **semi-ladder** of length \(n\).

Definition 1.28. The graph \(P_m \times P_n\) is called a **planar grid**.

Definition 1.29. Let \(P_n\) be a path with \(n\) vertices \(u_1, u_2, \ldots, u_n\). The tree obtained by adding \(n\) vertices \(v_1, v_2, \ldots, v_n\) such that for \(i = 1, 2, \ldots, n\), \(v_i\) is adjacent to \(u_i\) is called a **comb**.

Definition 1.30. **Klein four group** \(V_4 = Z_2 \oplus Z_2\).

Definition 1.31. The graph obtained by attaching a pendant edge at each vertex of a cycle \(C_n\) is called a **crown**. It is denoted by \(C_n \odot K_1\).
Definition 1.32. The *sequential join* of graphs G_1, G_2, \ldots, G_n is formed from $G_1 \cup G_2 \cup \cdots \cup G_n$ by adding edges joining each vertex of G_i with each vertex of G_{i+1} for $1 \leq i \leq n - 1$.

Notation 1.33. We shall use $\sum\{a_i : 1 \leq i \leq n\}$ to mean $a_1 + a_2 + \cdots + a_n$.