CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENT</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FLOWCHART</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>SYMBOLS AND ABBREVIATION</td>
<td>xxv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xcvii</td>
</tr>
<tr>
<td>CHAPTER 1 History and background of hypercholesterolemia</td>
<td></td>
</tr>
<tr>
<td>1.1 History of Cholesterol</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Synthesis, transport and storage of cholesterol</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 Excretion</td>
<td>5</td>
</tr>
<tr>
<td>1.1.3 Sterol regulatory element binding proteins (SREBPs)</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Cholesterol Homeostasis</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1 Clinical disorders associated with hyperlipoproteinaemia</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Hypocholesterolemic drugs and their mechanism</td>
<td></td>
</tr>
<tr>
<td>1.3.1 HMG-CoA reductase inhibitors</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2 Fibric acid derivatives</td>
<td>13</td>
</tr>
<tr>
<td>1.3.3 Niacin</td>
<td>14</td>
</tr>
<tr>
<td>1.3.4 Bile acid sequestrants</td>
<td>14</td>
</tr>
<tr>
<td>1.3.5 Agents act through absorption of cholesterol:</td>
<td>14</td>
</tr>
<tr>
<td>1.4 Major herbs used in treatment of hypercholesterolemia</td>
<td></td>
</tr>
<tr>
<td>1.4.1 Guggulu</td>
<td>16</td>
</tr>
<tr>
<td>1.4.2 Artichoke leaf extract</td>
<td>16</td>
</tr>
<tr>
<td>1.4.3 Garlic</td>
<td>17</td>
</tr>
<tr>
<td>1.4.4 Primrose oil</td>
<td>17</td>
</tr>
<tr>
<td>1.4.5 Plantago seeds</td>
<td>17</td>
</tr>
<tr>
<td>1.4.6 Red yeast rice</td>
<td>18</td>
</tr>
<tr>
<td>1.5 Anti-hyperlipidemic plants and formulations of ayurveda</td>
<td>18</td>
</tr>
<tr>
<td>CHAPTER 2 Introduction to Plants M. indica and M. oleifera</td>
<td></td>
</tr>
</tbody>
</table>

vi
2.1 *M. indica*

2.1.1 Taxonomic classification 20
2.1.2 Species of mango 21
2.1.3 Synonyms 22
2.1.4 Geographic distribution 22
2.1.5 Description 22
2.1.6 Traditional knowledge and uses 23
2.1.7 Chemical constituents from *M. indica*
 2.1.7.1 General 24
 2.1.7.2 Leaves 24
2.1.8 Cultivation
 2.1.8.1 Climate and soil 29
 2.1.8.2 Propagation and planting 30
 2.1.8.3 Pruning 30
 2.1.8.4 Culture 30
2.1.9 Pharmacological Activity
 2.1.9.1 From tree/plant 30
 2.1.9.2 Pharmacological activity of leaves other than cholesterol lowering 31
 2.1.9.3 Cholesterol lowering activity of leaves 31

2.2 *M. oleifera*

2.2.1 Taxonomic classification 33
2.2.2 Different species 33
2.2.3 Synonyms 34
2.2.4 Geographical distribution & morphology 35
2.2.5 Traditional knowledge & uses 35
2.2.6 Pharmacological Activity 36
2.2.7 Chemical constituents from *M. oleifera* 36
2.2.8 Nutritional importance 40
2.2.9 Cultivation
 2.2.9.1 Climate and soil 42
 2.2.9.2 Sowing and planting 43
 2.2.9.3 Harvesting 44
2.2.10 Formulations of leaves 44
2.2.11 Hypolipidemic/Hypocholesterolemic activity of M. oleifera 45

CHAPTER 3 Introduction to bioassays and its application
3.1 Introduction 48
3.2 Characteristics of an ideal screening assay for natural product extracts 50
3.3 Principles of bioassay 50
3.4 Purpose of bioassay 51
3.5 Types of bioassay 51
3.6 Selection and standardization of bioassays for cholesterol Blocking
3.6.1 Bile acid binding assay 54
 3.6.1.1 Introduction 54
 3.6.1.2 Principle 55
 3.6.1.3 Procedure 55
3.6.2 Citrate synthase inhibition assay 56
 3.6.2.1 Introduction 56
 3.6.2.2 Principle 56
 3.6.2.3 Procedure 57
3.6.3 Acyl-CoA: monoacylglycerol acyltransferase (MGAT-2) Inhibition assay 57
 3.6.3.1 Introduction 57
 3.6.3.2 Principle 57
 3.6.3.3 Materials required 58
 3.6.3.4 Procedure 58
3.6.4 Plasma lipoprotein transfer protein (PLTP) assay 59
 3.6.4.1 Introduction 59
 3.6.4.2 Principle 60
 3.6.4.3 Procedure 61
3.6.5 Triacyl glycerol hydrolase (TGH) inhibition assay 61
 3.6.5.1 Introduction 61
 3.6.5.2 Principle 61
3.6.5.3 Procedure 61
3.6.6 Lipase inhibition assay
3.6.6.1 Introduction 62
3.6.6.2 Principle 62
3.6.6.3 Materials required 63
3.6.6.4 Reagents / chemical preparations 63
3.6.6.5 Procedure 64
3.6.7 Cholesterol Esterase Inhibition Assay
3.6.7.1 Introduction 64
3.6.7.2 Principle 65
3.6.7.3 Procedure 65

3.7 Screening of M. indica extracts and determination of IC \(_{50}\) value in cholesterol esterase inhibition assay.
3.7.1 Introduction 67
3.7.2 Materials and methods 67
3.7.2.1 Plant materials 68
3.7.2.2 Extraction 68
3.7.3 Study on impact of different solvent extracts on the Yield and activity: 68
3.7.4 Results and Discussion 69
3.7.5 Conclusion 70

3.8 Screening of M. oleifera extracts
3.8.1 Introduction 71
3.8.2 Preparation of extracts 71
3.8.3 Results and discussion 73
3.8.4 Conclusion 73

CHAPTER 4 Bioactivity guided fractionation of M. indica
4.1 Introduction 74
4.2 Materials and Methods 75
4.2.1 Plant material 75
4.2.2 Column chromatography 75
4.2.3 Solvents 75
4.2.4 Instruments 75
CHAPTER 5 Bioactivity guided fractionation of methanol extract of M. oleifera leaves

5.1 Introduction 95
5.2 Materials and Methods 95
 5.2.1 Plant material 96
 5.2.2 Column chromatography 96
 5.2.3 Extraction 96
 5.2.4 Liquid-liquid partition 96
 5.2.5 Thin layer chromatography 97
 5.2.6 Evaluation of the fractional inhibitory concentration index of methanol extracts of both leaf and fruit. 99

5.3 Bioactivity guided fractionation of M. oleifera using lipase inhibition assay.
 5.3.1 Column chromatography 100
5.4 Spectroscopic Data 107
5.5 Characterization of Mol-02 109
5.6 Results and Discussion 109
5.7 Repetition of fractionation of MOL 111
 5.7.1 Background 111
 5.7.2 Spectral details of niazirin 117
 5.7.3 Characterization of compound (Mol 03) 119
5.8 Results and Discussion 120
5.9 Conclusion 121
CHAPTER 6 Isolation of phenolic compounds from butanol fraction of *M. indica*

6.1 Introduction
6.2 Isolation of chemical constituents from butanol fraction of *M. indica* Leaf
6.2.1 Preparation of extract
6.2.2 Partitioning of methanol extract
6.3 Spectral studies of compounds
6.4 Characterization of compounds
6.5 Isolation of iriflophenone derivatives.
6.6 Preparative HPCCC Separation
6.6.1 Establishing hydrodynamic equilibrium
6.6.2 Measurement of Partition Coefficient (K): Apparatus
6.6.4 HPLC analysis and identification of CCC peaks
6.7 Characterization of Compounds
6.8 Results and Discussion
6.9 Conclusion

CHAPTER 7 Isolation of phenolic compounds from butanol fraction of *M. oleifera*

7.1 Introduction
7.2 Materials and Methods
7.2.1 Preparation of extracts
7.2.2 Partitioning of extract
7.3 Spectral studies for isolated compounds
7.4 Characterization of isolated compounds from *M. oleifera*
7.5 Introduction
7.6 Measurement of Partition Coefficient
7.7 HPLC analysis and identification of CCC Peaks
7.8 Results and Discussion
7.9 Conclusion

CHAPTER 8 Evaluation of cholesterol lowering activity of an extract of *M. indica* in albino Wistar rats
8.1 Introduction 186
8.2 Materials and Methods 186
 8.2.1 Test system 186
 8.2.2 Test substance 186
 8.2.3 Drugs/chemicals used 187
 8.2.4 Experimental design 187
 8.2.5 Study design 188
8.3 Statistics 188
8.4 Results and discussion 188
8.5 Conclusion 190

CHAPTER 9 Evaluation of cholesterol lowering activity of extract of M. oleifera in Triton WR1339 induced hypercholesterolemia in albino Wistar rats

9.1 Introduction 194
9.2 Materials and Methods 194
 9.2.1 Test system 194
 9.2.2 Test substance 195
 9.2.3 Drugs/chemicals used 195
 9.2.4 Reagents/diagnostic kits used 195
 9.2.5 Instruments used 195
9.3 Experimental design 195
9.4 Statistics 196
9.5 Results and discussion 197
9.6 Conclusion 199

CHAPTER 10 Evaluation of cholesterol lowering activity of extract of M. oleifera in albino Wistar rats.

10.1 Introduction 203
10.2 Materials and Methods 204
 10.2.1 Test system 204
 10.2.2 Test substance 204
 10.2.3 Drugs/chemicals used 204
 10.2.4 Reagents/diagnostic kits used 205
 10.2.5 Instruments used 205
CHAPTER 11 Standardization of extracts and screening of isolated compounds

11.1 Standardization of extracts

11.1.1 Introduction 214

11.1.2 Materials and Methods 216

11.1.2.1 Estimation of 3β-taraxerol of *M. indica* by HPLC method 217

11.1.2.2 Estimation of phenolic compounds of *M. indica* by HPLC method 218

11.1.2.3 Estimation of alpha linolenic acid in *M. oleifera* by GC method 219

11.1.2.4 Phenolic compounds in *M. oleifera* by HPLC method 220

11.1.3 Results And Discussion 221

11.1.3.1 Estimation of 3β-taraxerol of *M. indica* by HPLC method 221

11.1.3.2 Estimation of phenolic compounds of *M. indica* by HPLC method 222

11.1.3.3 Estimation of α-linolenic acid by GC method 226

11.1.3.4 Estimation of phenolic compounds from *M. oleifera* by HPLC method 227

11.1.4 Conclusion 230

11.2 Screening of isolated compounds

11.2.1 Screening of isolated compounds in lipase inhibition assay and cholesterol esterase inhibition assay 230

11.2.2 Conclusion 236

Summary 238
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td>241</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>271</td>
</tr>
<tr>
<td>LIST OF CONFERENCES ATTENDED</td>
<td>271</td>
</tr>
<tr>
<td>Annexures</td>
<td>272</td>
</tr>
</tbody>
</table>