## Contents

List of tables
List of figures

1.0. Introduction  
1.1. History of AD  
1.2. Disease Presentation  
1.3. Changes in the Brain  
1.4. Prevalence of Alzheimer’s disease  
1.5. Causes and risk factors of AD  
1.6. Amyloid Cascade Hypothesis  
1.7. Existing treatments for Alzheimer’s disease  
1.8. Aim and Objectives  

2.0. Review of literature  
2.1. Amyloid-β plaque formation and aggregation  
2.1.1. BACE1  
2.1.2. γ-secretase  
2.1.3. PKCγ  
2.1.4. BDNF  
2.1.5. ApoE4  
2.2. Neurofibrillary tangles (NFT) formation  
2.2.1. GSK-3β  
2.2.2. Akt1  
2.2.3. PKA-Cα  
2.2.4. Tau  
2.2.5. CDK5  
2.2.6. ERK2  
2.2.7. P35  
2.2.8. P25  
2.2.9. BIN1  
2.3. Oxidative stress liaised proteins  
2.3.1. Glutathione peroxidase (GPx1 and GPx2)  
2.3.2. SOD1  
2.4. Apoptotic regulators  
2.4.1. BAX  
2.4.2. BAD  
2.4.3. Caspase-8  
2.5. Tertiary structure prediction  
2.5.1. Validation of homology models  
2.6. Lead identification  
2.6.1. Virtual screening  
2.6.2. Pharmacophore based screening  
2.6.3. QSAR based screening  
2.7. Molecular docking  
2.8. Molecular dynamics simulations  
2.9. ADME predictions  
2.10. Database development and deployment  

3.0. Material and Methods
3.1. Study Design: hardware and software
3.2. Selected proteins of amyloid pathway
3.2.1. Retrieval of amyloid pathway protein structures
3.2.2. Tertiary structure prediction
3.2.2.1. Model generation
3.2.2.2. Model validation
3.2.3. Selection of binding site residues
3.2.4. Protein Preparation
3.3. Pharmacophore modeling
3.3.1. Refine extra precision docking
3.3.2. Energy optimized pharmacophore modeling
3.3.3. Ligand based pharmacophore modeling for Akt1
3.3.3.1. Data set analysis for Akt1
3.3.3.2. QSAR model building for Akt1
3.3.4. Validation of pharmacophore / QSAR models
3.4. Pharmacophore / ligand based screening
3.5. Molecular docking and binding free energy (ΔG) calculations
3.5.1. Binding free energy calculations
3.5.2. Validation of lead
3.6. Molecular dynamics simulations
3.7. ADME predictions
3.8. Online Database development and deployment

4.0. Results and discussion
4.1. Retrieval of amyloid pathway protein structures
4.2. BACE1
4.2.1. Protein preparation and grid generation
4.2.2. E-pharmacophores and CPH generation
4.2.3. Validation of CPH
4.2.4. Lead identification for BACE1
4.2.4.1. BACE1 inhibitors library preparation
4.2.4.2. Molecular docking
4.2.4.3. Validation of lead
4.2.5. Molecular dynamics simulations
4.3. γ-Secretase
4.3.1. Protein preparation and grid generation
4.3.2. Lead identification for γ-secretase
4.3.2.1. γ-secretase inhibitors library preparation
4.3.2.2. Molecular docking
4.3.2.3. Validation of lead
4.3.3. Molecular dynamics simulations
4.4. PKC-γ
4.4.1. Tertiary structure prediction
4.4.2. Validation of PKC-γ model
4.4.3. Protein preparation and grid generation
4.4.4. Lead identification for PKC-γ
4.4.4.1. PKC-γ inhibitors library preparation
4.4.4.2. Molecular docking
4.4.4.3. Validation of lead
4.4.5. MD simulations studies
4.5. BDNF
4.5.1. BDNF tertiary structure prediction
4.5.2. Validation of BDNF model
4.5.3. Protein preparation and grid generation
4.5.4. Lead identification for BDNF
4.5.4.1. BDNF activators library preparation
4.5.4.2. Molecular docking
4.5.4.3. Validation of lead
4.5.5. MD simulations studies
4.6. ApoE4
4.6.1. Protein preparation and grid generation
4.6.2. Lead identification for ApoE4
4.6.2.1. ApoE4 inhibitors library preparation
4.6.2.2. Molecular docking
4.6.2.3. Validation of lead
4.6.3. Molecular dynamics simulations
4.7. GSK-3β
4.7.1. Protein preparation and grid generation
4.7.2. E-pharmacophores and CPH generation
4.7.3. Validation of CPH
4.7.4. Lead identification for GSK-3β
4.7.4.1. GSK-3β inhibitors library preparation
4.7.4.2. Molecular docking
4.7.4.3. Validation of lead
4.7.5. Molecular dynamics simulations
4.8. Akt1
4.8.1. Protein preparation and grid generation
4.8.2. Preparation of Akt1 data set
4.8.3. QSAR model generation for Akt1
4.8.4. Validation of QSAR model
4.8.5. Lead identification for Akt1
4.8.5.1. Akt1 inhibitor library preparation
4.8.5.2. Molecular docking
4.8.5.3. Validation of lead
4.8.6. Molecular dynamics simulations
4.9. PKA-Cα
4.9.1. Protein preparation and grid generation
4.9.2. PKA-Cα e-pharmacophore generation
4.9.3. Validation of PKA-Cα e-pharmacophores
4.9.4. Lead identification for PKA-Cα
4.9.4.1. PKA-Cα activators library preparation
4.9.4.2. Molecular docking
4.9.4.3. Validation of lead
4.9.5. Molecular dynamics simulations
4.10. Tau protein
4.10.1. Protein preparation and grid generation
4.10.2. Tau e-pharmacophore generation
4.10.3. Validation of e-pharmacophores
4.10.4. Lead identification for Tau
4.10.4.1. Tau inhibitors library preparation
4.10.4.2. Molecular docking
4.10.4.3. Validation of lead 132
4.10.5. Molecular dynamics simulations 132
4.11. CDK5 136
4.11.1. Protein preparation and grid generation 136
    4.11.2. CDK5 e-pharmacophore generation 136
4.11.3. Validation of e-pharmacophores 137
4.11.4. Lead identification for CDK5 137
4.11.4.1. CDK5 inhibitors library preparation 137
4.11.4.2. Molecular docking 137
4.11.4.3. Validation of lead 140
4.11.5. Molecular dynamics simulations 140
4.12. ERK2 144
4.12.1. Protein preparation and grid generation 144
4.12.2. E-pharmacophores and CPH generation 144
4.12.3. Validation of CPH 145
    4.12.4. Lead identification for ERK2 146
4.12.4.1. ERK2 inhibitors library preparation 146
4.12.4.2. Molecular docking 146
4.12.4.3. Validation of lead 149
4.12.5. Molecular dynamics simulations 149
4.13. P35 153
    4.13.1. P35 tertiary structure prediction 153
    4.13.2. Validation of p35 model 153
    4.13.3. Protein preparation and grid generation 154
4.13.4. Lead identification for p35 154
4.13.4.1. P35 inhibitor library preparation 154
4.13.4.2. Molecular docking 155
4.13.4.3. Validation of leads 157
4.13.5. MD simulations studies 157
4.14.1. P25 tertiary structure prediction 161
    4.14.2. Validation of p25 model 162
    4.14.3. Protein preparation and grid generation 163
4.14.4. Lead identification for P25 163
4.14.4.2. Molecular docking 163
4.14.4.3. Validation of leads 166
4.14.5. MD simulations studies 166
4.15. BIN1 170
4.15.1. BIN1 tertiary structure prediction 170
    4.15.2. Validation of BIN1 model 171
    4.15.3. Protein preparation and grid generation 172
4.15.4. Lead identification for BIN1 172
4.15.4.1. BIN1 inhibitors library preparation 172
4.15.4.2. Molecular docking for BIN1 172
4.15.4.3. Validation of lead 174
4.15.5. MD simulations studies 175
4.16. SOD1 178
4.16.1. Protein preparation and grid generation 178
4.16.2. SOD1 e-pharmacophore generation 179
4.16.3. Validation of e-pharmacophores 179
4.16.4. Lead identification for SOD1 180
4.16.4.1. SOD1 inhibitors library preparation 180
4.16.4.2. Molecular docking 180
    4.16.4.3. Validation of leads 182
4.16.5. Molecular dynamics simulations 182
4.17. GPx1 186
4.17.1. Protein preparation and grid generation 186
4.17.2. Lead identification for GPx1 187
4.17.2.1. GPx1 activator library preparation 187
4.17.2.2. Molecular docking 187
    4.17.2.3. Validation of lead 190
4.17.3. Molecular dynamics simulations 190
4.18. GPx2 194
4.18.1. Protein preparation and grid generation 194
4.18.2. Lead identification for GPx2 194
4.18.2.1. GPx2 activator library preparation 194
4.18.2.2. Molecular docking 195
4.18.2.3. Validation of lead 197
4.18.3. Molecular dynamics simulations 197
4.19. BAX 201
4.19.1. Protein preparation and grid generation 201
4.19.2. Lead identification for BAX 202
4.19.2.1. BAX inhibitors library preparation 202
4.19.2.2. Molecular docking 202
4.19.2.3. Validation of lead 204
4.19.3. Molecular dynamics simulations 205
4.20. BAD 208
    4.20.1. BAD tertiary structure prediction 209
4.20.2. Validation of BAD model 209
4.20.3. Protein preparation and grid generation 210
4.20.4. Lead identification for BAD 210
    4.20.4.1. BAD inhibitors library preparation 210
4.20.4.2. Molecular docking 210
4.20.4.3. Validation of lead 213
4.20.5. MD simulations studies 213
4.21. Caspase-8 217
4.21.1. Tertiary structure prediction 217
    4.21.2. Validation of caspase-8 model 218
4.21.3. Protein preparation and grid generation 219
4.21.4. Lead identification for Caspase-8 219
    4.21.4.1. Caspase-8 inhibitor library preparation 219
4.21.4.2. Molecular docking 219
4.21.4.3. Validation of leads 222
4.21.5. Molecular dynamics simulations 222
4.22. ADME properties of proposed leads 226
    4.23. Online Database development and deployment 239
5.0. Summary and Conclusion 240
6.0. References 246
7.0. List of publications by author 314