List of Figures

Fig.1.0 Software Development Paradigms: A Generic Perspective
Fig.1.1 Software Engineering Life-cycle Model
Fig.1.2 Structured Life-cycle
Fig.1.3 The Prototyping Life-cycle
Fig.1.4 Evolutionary Life-cycle
Fig.1.5 Spiral Model of the Software Product
Fig.1.6 Fourth Generation Techniques
Fig.1.7 The Expert System Life-cycle
Fig.1.8 Combining Life-cycle Methodologies

Fig.2.0 Hierarchical Structuring of Program Planning Linkages
Fig.2.1 Overlap of the Analysis Task
Fig.2.2 Model Exchange Isomorphism
Fig.2.3 Preliminary Structured Self Interaction Matrix
Fig.2.4 Preliminary Structural Model
Fig.2.5 Refined Object SSIM Data Matrix
Fig.2.6 Refined Structural Model Depicting Object Module Dependencies
Fig.2.7 NC Software Booch Diagram [PRE87]

Fig.3.0 (a) Classic Rayleigh Curve
(b) Manpower vs Time Plot
(c) Cumulative Effort vs Time Plot
Fig.3.1 MBI Illustration
Fig.3.2 Project Life-cycle
Fig.3.3 Representation of Various Project Scales [LON87]
Fig.3.4 Size-Effort-Time Trade-off Chart
Fig.3.5 Re-used Source Code Case
Fig.3.6 Size Estimation Process
Fig.3.7 Software Equation
Fig.3.8 MBI Equation Plot
Fig.3.9 Simultaneous Solution of Software Equation and MBI Equation
Fig.3.10 Construction of Planning Zone
Fig.3.11 Putnam Based Estimation Method
Fig.3.12 Input Variability Summary

(xiii)
Fig.3.13 Monte Carlo Simulation
Fig.3.14 Constructing a Risk Profile
Fig.3.15 Design to Risk (99%)
Fig.3.16 Best Bid Planning
Fig.3.17 Typical Software Defect Profile
Fig.3.18 Causal Loop Diagram
Fig.3.19 Growth Structure for a Typical Variable (positive feedback)
Fig.3.20 Positive Feedback Flow Diagram
Fig.3.21 Causal Loop Diagram of Negative Feedback Structures
Fig.3.22 Generalized Flow Diagram for Negative Feedback System
Fig.3.23 Zero Goal Structure Flow Diagram
Fig.3.24 Inflow Outflow Structure Flow Diagram
Fig.3.25 S-Shaped Growth Structure
Fig.3.26 S-Shaped Structure Flow Diagram
Fig.3.27 Component Variable Causal Relationships
Fig.3.28 Comprehensive Causal Loop Diagram
Fig.3.29 Productivity Estimation Flow Model
Fig.3.30 System Size Estimation Flow Model
Fig.3.31 Management Interactions Flow Model
Fig.3.32 Management Decision Support Model with ANN and DSS
Fig.3.33 MBI Decision Space Partitioning
Fig.3.34 Structure of Feedforward Neural Network ANN for MBI Estimation
Fig.3.35 Decision Support System DSS Architecture
Fig.3.36 Cumulative Cost Simulation Flow Model
Fig.3.37 Code Production Flow Model
Fig.3.38 Defects Flow Model
Fig.3.39 Comprehensive System Dynamics Flow Diagram

Fig.4.1 Generalized System Dynamics Flow Diagram : Branch Formulation
Fig.4.2 Example : 2- Neuron Hopfield Neural Network
Fig.4.3 Formal Neuron with a Linear Characteristic
Fig.4.4 Terminal Neuronal Model and Associated Linearized Characteristic Equations
Fig.4.5 Graph for the Circuit of Fig.4.2 showing the selected Formulation Tree
Fig.4.6 Generalized System Dynamics Flow Diagram : Chord Formulation
Fig.4.7 Generalized System Dynamics Flow Diagram : State Variable Formulation
Fig.4.8 Generalized System Dynamics Flow Diagram : State Variable Formulation : "Charge" - "Flux-linkage" Controlled Case
Fig. 4.9 Generalized System Dynamics Flow Diagram : Degenerate Systems
Fig. 4.10 Generalized System Dynamics Flow Diagram for Non-Degenerate Systems with Non-linear Components
Fig. 4.11 Generalized System Dynamics Flow Diagram : Non-Degenerate Systems with Non-linear Components : "Charge" - "Flux-linkage" Controlled Case

Fig. 5.1 Hopfield Neural Network
Fig. 5.2 Sigmoidal Transfer Characteristic
Fig. 5.3 State Model Causal Loop Diagram
Fig. 5.4 System Dynamics State Model Flow Diagram
Fig. 5.5 Generalized System Dynamics Flow Diagram for First Order Sensitivity State Model
Fig. 5.6 Causal Loop Diagram for First Order Sensitivity State Model : An Example
Fig. 5.7 Generalized System Dynamics Flow Diagram for First Order Sensitivity State Model : An Example
Fig. 5.8 State Evolution (2-Neurons) Linear Threshold Transfer Function
Fig. 5.9 Sensitivity Simulations : 2-Neuron Linear Threshold Case
Fig. 5.10 State Evolution : 2-Neuron Sigmoidal Case
Fig. 5.11 Sensitivity Simulation : 2-Neuron Sigmoidal Case
Fig. 5.12 Differential Equation Simulation
Fig. 5.13 Circuit for Laboratory Simulation
Fig. 5.14 Operational Amplifier Integrator
Fig. 5.15 Simulation Result (Lambda = 1)
Fig. 5.16 State Evolution : 3-Neuron Linear Threshold Case
Fig. 5.17 Sensitivity Simulation : 3-Neuron Linear Threshold Case
Fig. 5.18 State Evolution : 3-Neuron Sigmoidal Case
Fig. 5.19 Sensitivity Simulation : 3-Neuron Sigmoidal Case
Fig. 5.20 Gradient Descent on Sensitivity Squared Error
Fig. 5.21 Gradient Descent Results : Error Derivative w.r.t. r
Fig. 5.22 Gradient Descent Results : Error Derivative w.r.t. C
Fig. 5.23 Gradient Descent Results : Error Derivative w.r.t. Lambda
Fig. 5.24 Gradient Descent Results : Error Derivative w.r.t. T
Fig. 5.25 Gradient Descent Results : Parameter Changes vs Iteration Number - Neuronal Input Resistance : r
Fig. 5.26 Gradient Descent Results : Parameter Changes vs Iteration Number - Neuronal Input Capacitance : C
Fig. 5.27 Gradient Descent Results : Parameter Changes vs Iteration Number - Neuronal Gain Scale Factor : Lambda
Fig. 5.28 Gradient Descent Results : Parameter Changes vs Iteration Number - Inhibitory Feedback Conductance : T
Fig.5.29 Sensitivity Trajectories during Gradient Descent - Sensitivities of u_1, u_2 w.r.t r, C

Fig.5.30 Sensitivity Trajectories : u_1 w.r.t Lambda

Fig.5.31 Sensitivity Trajectories : u_2 w.r.t Lambda

Fig.5.32 Sensitivity Trajectories : u_1 w.r.t T

Fig.5.33 Sensitivity Trajectories : u_2 w.r.t T

Fig.5.34 Generalized System Dynamics Flow Diagram for the Second Order Sensitivity State Model : Example : $\partial S_{n}^{u_i}/\partial r$

Fig.AI.1 Interpretive Structural Model for the Case Study "Animal Taxonomy"

Fig.AII.1 A Simple Net

Fig.AII.2 A Net Depicting Loops and Parallel Lines

Fig.AII.3 Transitive, Asymmetric, Complete Digraph

Fig.AII.4 Intransitive Digraph

Fig.AII.5 Transitive Digraph

Fig.AII.6 Minimum Line Digraph Corresponding to Fig.AII.5

Fig.AIII.1 Architecture of Interpretive Structural Modeller

Fig.AIII.2 Object Oriented Analyzer Screen Print

Fig.AIII.3 SSIM Interrogation Screen Print

Fig.AIII.4 Exemplar ISM Graphic Screen Print

Fig.AIV.1 Architecture of Software Project Planner

Fig.AIV.2 Project Description Screen Print

Fig.AIV.3 Project Ceilings Interrogation Screen Print

Fig.AIV.4 Minimum Time Solution Screen Print

Fig.AIV.5 Decision Support System Screen Print

Fig.AIV.6 Dynamic Check Plots Screen Print

Fig.AVI.1 Architecture of the Hopfield Simulator

Fig.AVI.2 Dynamic Simulation and Gradient Descent Results Screen Print