Neutral Difference Equations With "Maxima" - II

6.1 Introduction

In the final chapter, we again consider a neutral difference equation with "maxima" of the form

\[\Delta (a(n) \Delta (y(n) + p(n)y(n - k))) - q(n) \max_{[n-l,n]} y(s) = 0, n \in \mathbb{N}_0, \]

(6.1.1)

where \(k \) and \(\ell \) are integers with \(k \geq 1 \) and \(\ell \geq 0 \), \(\{a(n)\}, \{p(n)\} \) and \(\{q(n)\} \), are real sequences and discuss the oscillatory and asymptotic behavior of solutions of equation (6.1.1).

Let \(\theta = \max \{k, \ell\} \). Then by a solution of equation (6.1.1), we mean a real sequence \(\{y(n)\} \) defined for \(n \geq -\theta \) and which satisfies equation (6.1.1) for \(n \in \mathbb{N}_0 \).

The content of this chapter has been communicated for publication Journal of Mathematical Research and Exposition.
Clearly in this case if we are given real numbers
\[y(n) = b(n), \quad n = -m_0, -m_0 + 1, \ldots, 0 \]
(6.1.2)
as a set of initial conditions, then equation (6.1.1) has a unique solution satisfying (6.1.2).

In this chapter, we investigate asymptotic behavior of nonoscillatory solutions of equation (6.1.1). We also establish sufficient conditions to ensure that every bounded/unbounded solutions of equation (6.1.1) to be oscillatory.

Note that since equation (6.1.1) is nonlinear, assuming a solution is of one sign requires that the cases \(y(n) > 0 \) and \(y(n) < 0 \) must both be considered. We shall say that conditions (H) are met if the following conditions hold:

(H1) \(\{a(n)\} \) is a positive sequence of real numbers such that \(\sum_{n=n_0}^{\infty} \frac{1}{a(n)} = \infty \);

(H2) \(\{q(n)\} \) is a sequence of nonnegative real numbers such that \(\sum_{n=n_0}^{\infty} q(n) = \infty \).

We often use the sequence \(\{z(n)\} \) which is defined as follows:
\[z(n) = y(n) + p(n) y(n - k). \]
(6.1.3)
Then equation (6.1.1) implies that
\[\Delta (a(n) \Delta z(n)) = q(n) \max_{[n-\ell,m]} y(s), \]
(6.1.4)
and
\[a(n) \Delta z(n) = a(n_0) \Delta z(n_0) + \sum_{s=n_0}^{n-1} q(s) \max_{[s-\ell,s]} y(t). \]
(6.1.5)
6.2 Preliminary Lemmas

In this section we state and prove some lemmas, which are needed in the sequel to prove our main results.

Lemma 6.2.1. Let conditions \((H)\) hold and there exists a constant \(p\) such that \(p \leq p(n) \leq 0\).

(a) If \(\{y(n)\}\) is an eventually positive solution of equation (6.1.1), then the sequences \(\{z(n)\}\) and \(\{a(n)\Delta z(n)\}\) are eventually monotonic and either

\[
z(n) > 0, \ \Delta z(n) > 0, \ \Delta (a(n)\Delta z(n)) \geq 0
\]

and

\[
\lim_{n \to \infty} z(n) = \lim_{n \to \infty} a(n)\Delta z(n) = \infty \tag{6.2.1}
\]

or

\[
z(n) > 0, \ \Delta z(n) < 0, \ \Delta (a(n)\Delta z(n)) \geq 0
\]

and

\[
\lim_{n \to \infty} z(n) = \lim_{n \to \infty} a(n)\Delta z(n) = 0. \tag{6.2.2}
\]

(b) If \(\{y(n)\}\) is an eventually negative solution of equation (6.1.1), then the sequences \(\{z(n)\}\) and \(\{a(n)\Delta z(n)\}\) are eventually monotonic and either

\[
z(n) < 0, \ \Delta z(n) < 0, \ \Delta (a(n)\Delta z(n)) \leq 0
\]
and

\[\lim_{n \to \infty} z(n) = \lim_{n \to \infty} a(n) \Delta z(n) = -\infty \]
(6.2.3)

or

\[z(n) < 0, \ \Delta z(n) > 0, \ \Delta (a(n) \Delta z(n)) \leq 0 \]

and

\[\lim_{n \to \infty} z(n) = \lim_{n \to \infty} a(n) \Delta z(n) = 0. \]
(6.2.4)

Proof. (a) Let \(\{y(n)\} \) be an eventually positive solution of equation (6.1.1). From (6.1.4), it follows that

\[\Delta (a(n) \Delta z(n)) = q(n) \max_{\lfloor n - \ell, n \rfloor} y(s) \geq 0 \]

eventually and \(a(n) \Delta z(n) \) is a nondecreasing sequence. On the other hand \((H_4)\) implies that \(q(n) \neq 0 \) and therefore \(\{a(n) \Delta z(n)\} \) is eventually of one sign and in consequence \(\{z(n)\} \) is eventually monotonic.

First suppose that there exists an integer \(n_1 \geq n_0 \in \mathbb{N} \) such that \(a(n) \Delta z(n) > 0 \) for \(n \geq n_1 \). Then there exists an integer \(n_2 > n_1 \) such that

\[a(n) \Delta z(n) \geq a(n_2) \Delta z(n_2) = c > 0 \text{ for } n \geq n_2. \]

Summing the last inequality, by \((H_1)\) we have

\[z(n) \geq z(n_2) + c \sum_{s=n_2}^{n-1} \frac{1}{a(s)} \to \infty, \quad n \to \infty, \]

hence \(z(n) \to \infty \) as \(n \to \infty \). Since \(y(n) \geq z(n) \) so \(y(n) \to \infty \) as \(n \to \infty \). From (6.1.5) and \((H_2)\), we see that \(a(n) \Delta z(n) \to \infty \) as \(n \to \infty \), and thus (6.2.1) holds.
Next if \(a(n) \Delta z(n) < 0 \) for \(n \geq n_0 \), then \(a(n) \Delta z(n) \to L \leq 0 \) as \(n \to \infty \). Suppose that \(L < 0 \). Then \(a(n) \Delta z(n) < L \) and by \((H_1)\), \(\lim_{n \to \infty} z(n) = -\infty \). From (6.1.3) it follows that the inequality
\[
z(n) > p(n) y(n - k) > py(n - k)
\]
is valid and therefore \(\lim_{n \to \infty} y(n) = \infty \). From (6.1.5) we obtain that \(\lim_{n \to \infty} a(n) \Delta z(n) = \infty \). The contradiction obtained shows that \(\lim_{n \to \infty} a(n) \Delta z(n) = 0 \) and since \(\{a(n) \Delta z(n)\} \) is a nondecreasing sequence, we have \(a(n) \Delta z(n) < 0 \) and \(\{z(n)\} \) is a decreasing sequence.

Suppose \(\lim_{n \to \infty} z(n) = L \), where \(L \) is finite. Let \(L > 0 \). The inequality \(y(n) > z(n) \) implies that \(y(n) > L \). From (6.1.5) and \((H_2)\) it follows that the relation \(\lim_{n \to \infty} a(n) \Delta z(n) = \infty \) is valid and we obtain a contradiction. Then \(L \leq 0 \). Let \(L < 0 \). The estimate
\[
\frac{L}{2} > z(n) = y(n) + p(n) y(n - k) > p(n) y(n - k) > py(n - k)
\]
is valid. From the inequality \(y(n - k) > \frac{L}{2p} > 0 \), we obtain
\(\lim_{n \to \infty} a(n) \Delta z(n) = \infty \), which is a contradiction. Thus \(L = 0 \) and since \(\{z(n)\} \) is a decreasing sequence, then \(z(n) > 0 \). Suppose that \(\lim_{n \to \infty} z(n) = -\infty \). As above the inequality \(y(n - k) > \frac{z(n)}{p} \) holds and \(\lim_{n \to \infty} y(n) = \infty \). From (6.1.5), it follows that \(\lim_{n \to \infty} a(n) \Delta z(n) = \infty \), and we again obtain a contradiction. Thus if \(\Delta z(n) < 0 \), then (6.2.2) is valid.

The proof of (b) is similar to that of (a) and hence the details are omitted. \(\square \)

Lemma 6.2.2. The sequence \(\{y(n)\} \) is a negative solution of equation
(6.1.1) if and only if \(\{-y(n)\}\) is a positive solution of the equation

\[
\Delta (a(n) \Delta (y(n) + p(n) y(n - k))) - q(n) \min_{[n-n, n]} y(s) = 0, \quad (6.2.5)
\]

Proof. The proof is straightforward and hence the details are omitted. \(\square\)

6.3 Asymptotic Behavior of Nonoscillatory Solutions

Here we give some oscillatory and asymptotic properties of solutions of equation (6.1.1).

Theorem 6.3.1. Let conditions (H) hold. If there exists a constant \(p\) such that \(p \leq p(n) \leq -1\), then every nonoscillatory solution \(\{y(n)\}\) of equation (6.1.1) satisfies \(|y(n)| \to \infty\) as \(n \to \infty\).

Proof. Let \(\{y(n)\}\) be an eventually negative solution of (6.1.1). Then Lemma 6.2.1 implies that (6.2.3) or (6.2.4) is valid. Suppose that (6.2.3) holds. Then from the inequality \(y(n) < z(n)\) it follows that \(\lim_{n \to \infty} y(n) = -\infty\) and the assertion of the theorem is proved. Suppose that (6.2.4) is valid and \(c = \limsup_{n \to \infty} y(n)\). If \(c < 0\), then \(y(n) < \frac{c}{2}\) and from (6.1.5) we obtain \(\lim_{n \to \infty} a(n) \Delta z(n) = -\infty\), which contradicts the relation \(\lim_{n \to \infty} a(n) \Delta z(n) = 0\) proved in Lemma 6.2.1. Hence \(c = 0\), that is, \(\limsup_{n \to \infty} y(n) = 0\). Then there is an increasing sequence of positive integers \(\{n_j\}\) such that \(y(n_j) \to 0\) as \(j \to \infty\) and

\[
\max_{[n_1, n_j]} y(s) = y(n_j). \quad (6.3.1)
\]

On the other hand, since \(z(n) < 0\), then \(y(n) < -p(n) y(n - k) \leq y(n - k)\). But the inequality \(y(n_j) < y(n_j - k)\) contradicts (6.3.1).
Thus only relation (6.2.3) holds and \(\lim_{n \to \infty} y(n) = -\infty \). The case when \(\{y(n)\} \) is eventually positive considered analogously. This completes the proof.

From Theorem 6.3.1, we immediately obtain,

Corollary 6.3.2. Under the assumptions of Theorem 6.3.1 all bounded solutions of equation (6.1.1) are oscillatory.

Theorem 6.3.3. Let conditions (H) hold and let \(\{p(n)\} \) satisfy one of the following conditions

\[
-1 < p \leq p(n) \leq 0 \quad (6.3.2)
\]

or

\[
0 < p(n) \leq p \leq 1 \text{ and } k \leq \ell. \quad (6.3.3)
\]

Then for each nonoscillatory solution \(\{y(n)\} \) of equation (6.1.1) either

\[
\lim_{n \to \infty} y(n) = 0 \text{ and } \lim_{n \to \infty} |y(n)| = \infty.
\]

Proof. We shall first consider the case when (6.3.2) is satisfied. Let \(\{y(n)\} \) be an eventually bounded positive solution of equation (6.1.1). Clearly in this case of the relations (6.2.1) and (6.2.2) only (6.2.2) is valid and thus \(\lim_{n \to \infty} z(n) = 0 \). Suppose that \(c = \limsup_{n \to \infty} y(n) > 0 \). Then there is an increasing sequence of integers \(\{n_j\} \) such that \(\lim_{j \to \infty} y(n_j) = c \). Choose a constant \(\alpha \) such that \(1 < \alpha < -\frac{1}{p} \) (if \(p(n) \equiv 0 \) then \(p \) could be any constant in \((-1,0))\). Then \(y(n) < \alpha c \) for sufficiently large \(n \) and we have

\[
z(n) = y(n) + p(n)y(n-k) \geq y(n) + \alpha c
\]
6.3. ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS

Hence
\[z(n_j) \geq y(n_j) + p\alpha c \]
as \(j \to \infty \) and obtain \(0 \geq c + p\alpha c = c(1 + p\alpha) > 0 \). This contradiction shows that \(\limsup_{n \to \infty} y(n) = 0 \) and \(\lim_{n \to \infty} y(n) = 0 \). Next let us assume that \(\{y(n)\} \) is an unbounded solution of (6.1.1). We shall show that in this case relation (6.2.1) is valid. Assume this is not true. Since \(\{y(n)\} \) is unbounded there is an increasing sequence of positive integers \(\{n_i\} \) such that \(y(n_i) \to \infty \) as \(i \to \infty \) and \(y(n_i) = \max_{[n_1, n_i]} y(n) \). Then we have
\[z(n_i) = y(n_i) + p(n_i) y(n_i - k) \]
\[\geq y(n_i) + p(n_i) y(n_i) \geq y(n_i) (1 + p) . \] (6.3.4)

From (6.3.2), (6.3.4) implies that \(\lim_{i \to \infty} z(n_i) = \infty \) which contradicts the relation \(\lim_{n \to \infty} z(n) = 0 \). Hence (6.2.1) is valid and \(\lim_{n \to \infty} z(n) = \infty \).

From the inequality \(y(n) > z(n) \), it follows that \(\lim_{n \to \infty} y(n) = \infty \). The proof is similar when \(\{y(n)\} \) is an eventually negative solution of equation (6.1.1). Now assume that (6.3.3) holds. Let \(\{y(n)\} \) be an eventually positive solution of equation (6.1.1). From (6.1.4), it follows that \(\Delta (a(n) \Delta z(n)) \geq 0 \) and \(a(n) \Delta z(n) \) and is nondecreasing.

Condition (H2) then implies that either \(a(n)\Delta z(n) > 0 \) or \(a(n)\Delta z(n) < 0 \). Let \(a(n) \Delta z(n) > 0 \). Clearly, \(\lim_{n \to \infty} z(n) = \infty \) and \(\{z(n)\} \) is an increasing sequence. From (6.1.3), we have
\[y(n) = z(n) - p(n) y(n - k) \]
\[\geq z(n) - p(n) z(n - k) \geq (1 - p) z(n) , \] (6.3.5)
where we have used the increasing character of \(\{z(n)\} \) and \(z(n) \geq y(n) \). Since \(\lim_{n \to \infty} z(n) = \infty \), from (6.3.5) we have \(\lim_{n \to \infty} y(n) = \infty \).
Next assume that \(\{a(n) \Delta z(n)\} \) is eventually negative. In this case, we obtain \(\{z(n)\} \) is a positive decreasing sequence. If \(\lim_{n \to \infty} a(n) \Delta z(n) = c < 0 \), then by (H1), we have \(\lim_{n \to \infty} z(n) = -\infty \).

Therefore, \(\lim_{n \to \infty} a(n) \Delta z(n) = 0 \). Second, we prove that \(\lim_{n \to \infty} z(n) = 0 \). Since \(\{z(n)\} \) is a positive decreasing sequence, \(\lim_{n \to \infty} z(n) = d \) exists with \(d \geq 0 \). Assume \(d > 0 \). Then \(z(n) > d \) eventually and

\[
d < y(n) + py(n - k) < (1 + p) \max \{y(n), y(n - k)\}.
\]

Thus

\[
\max \{y(n), y(n - k)\} > \frac{d}{1 + p}.
\]

Since \(k \leq \ell \), from the previous inequality it follows that

\[
\max \{y(n - \ell), y(n - \ell + 1), y(n - \ell + 2), \ldots, y(n)\} > \frac{d}{1 + p}.
\]

From (6.1.5) and (H2) we obtain \(\lim_{n \to \infty} a(n) \Delta z(n) = \infty \). This contradiction shows that \(\lim_{n \to \infty} z(n) = 0 \). Then (6.1.3) implies that \(\lim_{n \to \infty} y(n) = 0 \). A similar argument treats the case of negative solution of equation (6.1.1). This completes the proof of the theorem.

\[\square\]

Theorem 6.3.4. Let \(p(n) \equiv 1 \) and conditions (H1) and (H2) hold with the condition \(\sum_{n=1}^{\infty} q(n) = \infty \) replaced by

\[
\sum_{n=1}^{\infty} \bar{q}(n) = \infty \text{ when } \bar{q}(n) = \min\{q(n), q(n + k)\}.
\]

Then for each bounded positive solution \(\{y(n)\} \) of equation (6.1.1),

\[
\lim_{n \to \infty} y(n) = 0.
\]
6.3. ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS

Proof. Since \(\{ y (n) \} \) is an eventually positive solution of equation (6.1.1), we have \(\Delta (a(n) \Delta z(n)) \geq 0 \) and \(\{ a(n) \Delta z(n) \} \) is a nondecreasing sequence. Condition (6.3.6) implies that \(q(n) \neq 0 \) eventually. Then either \(a(n) \Delta z(n) > 0 \) or \(a(n) \Delta z(n) < 0 \) eventually. If \(a(n) \Delta z(n) > 0 \) then \(\lim_{n \to \infty} z(n) = \infty \) which contradicts the boundedness of \(\{ y(n) \} \). Hence \(a(n) \Delta z(n) < 0 \) and \(\{ z(n) \} \) is a positive decreasing sequence.

Let \(c = \lim_{n \to \infty} z(n) \) and suppose that \(c > 0 \). From (6.1.4) it follows that

\[
\Delta (a(n) \Delta z(n)) + q(n - k) \max_{[n-\ell-k,n-k]} y(s) = q(n) \max_{[n-\ell,n]} y(s) + q(n - k) \max_{[n-\ell-k,n-k]} y(s).
\]

Then using the definition of \(\bar{q}(n) \) and of (6.1.3), we obtain that

\[
\Delta (a(n) \Delta z(n)) + q(n - k) \max_{[n-\ell-k,n-k]} y(s) \geq \bar{q}(n - k) \left[\max_{[n-\ell,n]} y(s) + \max_{[n-\ell-k,n-k]} y(s) \right] \geq \bar{q}(n - k) \left[\max_{[n-\ell,n]} y(s) + \max_{[n-\ell,n]} y(s - k) \right] = \bar{q}(n - k) \max_{[n-\ell,n]} (y(s) + y(s - k)) = \bar{q}(n - k) \max_{[n-\ell,n]} z(s) = \bar{q}(n - k) z(n - \ell).
\]

Since \(\{ z(n) \} \) is a decreasing sequence and \(\lim_{n \to \infty} z(n) = c \), then \(z(n) > c \), and the last inequality takes the form

\[
\Delta (a(n) \Delta z(n)) + q(n - k) \max_{[n-\ell-k,n-k]} y(s) \geq c\bar{q}(n - k).
\]
Summing the last inequality from \(n_1 \) to \(n - 1 \), we obtain
\[
a(n) \Delta z(n) - a(n_1) \Delta z(n_1) + \sum_{s=n_1}^{n-1} q(s - k) \max_{[n-\ell-k,n-k]} y(t) > c \sum_{s=n_1}^{n-1} \bar{q}(s - k)
\]
or
\[
a(n) \Delta z(n) - a(n_1) \Delta z(n_1) + \sum_{s=n_1-k}^{n-1-k} q(s) \max_{[s-\ell,s]} y(t) \geq c \sum_{s=n_1-k}^{n-1-k} \bar{q}(s).
\]

Since \(\{a(n) \Delta z(n)\} \) is a negative nondecreasing sequence, then \(\{a(n) \Delta z(n)\} \) is a bounded sequence. On the other hand (6.3.6) implies that the right hand side of (6.3.7) tends to infinity as \(n \to \infty \). Thus from (6.3.7) we obtain
\[
\sum_{n=n_1}^{\infty} q(n) \max_{[n-\ell,n]} y(s) = \infty.
\]

Summing (6.1.4) from \(n_1 \) to \(n - 1 \), we obtain
\[
a(n) \Delta z(n) - a(n_1) \Delta z(n_1) = \sum_{s=n_1}^{n-1} q(s) \max_{[s-\ell,s]} y(t)
\]

Then (6.3.8) implies that \(\lim_{n \to \infty} a(n) \Delta z(n) = \infty \). The contradiction obtained shows that \(c = 0 \), that is, \(\lim_{n \to \infty} z(n) = 0 \). But from the inequality \(y(n) < z(n) \) it follows that \(\lim_{n \to \infty} y(n) = 0 \) and the proof is complete.

Remark 6.3.1. In contrast to neutral equations without "maxima", the assertion of Theorem 6.3.4 is not valid for bounded negative solutions.
of equation (6.1.1) even under stronger conditions $q(n) \geq q > 0$ for all $n \in \mathbb{N}_0$. We shall illustrate this fact with the following example.

Example 6.3.1. Consider the difference equation

$$
\Delta^2 (y(n) + y(n - 1)) - q(n) \min_{[n-1,n]} y(s) = 0, \quad (6.3.9)
$$

where

$$
q(n) = e^{-n-2}(1 - e)^2(e + 1) \left(\min_{[n-\ell,n]} \left(\phi(s) + e^{-s} \right) \right)^{-1}
$$

and \(\{\phi(n)\}_{n \geq 1} \) is the sequence defined by

$$
\phi(2k + 1) = 0, \quad \phi(2k + 2) = \frac{1}{2}, \quad k \in \mathbb{N}_0.
$$

It is easy to verify that

$$
\{y(n)\} = \{\phi(n) + e^{-n}\}
$$

is a positive solution of equation (6.3.9). Further more, obviously

$$
\lim_{n \to \infty} \inf y(n) = 0 \quad \text{and} \quad \lim_{n \to \infty} \sup y(n) = \frac{1}{2}.
$$

On the other hand, the inequality

$$
e^{-n} \leq \min_{[n-\ell,n]} \{\phi(s) + e^{-s}\} \leq e^{-n+1}
$$

implies that

$$
\frac{(e + 1)(1 - e)^2}{e^2} \leq q(n) \leq \frac{(e + 1)(1 - e)^2}{e^2}.
$$

Thus condition (6.3.6) is valid (in fact, even the stronger conditions $q(n) \geq q > 0$ holds). Clearly the function \(\{z(n)\} = \{-\phi(n) - e^{-n}\} \) is a negative solution of the equation

$$
\Delta^2 (x(n) + x(n - 1)) - q(n) \max_{[n-1,n]} x(s) = 0.
$$
Thus, although the conditions of Theorem 6.3.4 are met, equation (6.1.1) could have negative bounded solution which does not tend to zero.

We conclude this chapter with the following theorem.

Theorem 6.3.5. Let conditions (H) hold and there exist constants p_1 and p_2 such that $1 < p_1 \leq p(n) \leq p_2$. If $\{y(n)\}$ is a bounded nonoscillatory solution of equation (6.1.1), then $y(n) \to 0$ as $n \to \infty$.

Proof. Let $\{y(n)\}$ be an eventually positive solution of equation (6.1.1). As in Theorem 6.3.4 it is proved that if $\{y(n)\}$ is bounded positive solution of equation (6.1.1) then $\Delta (a(n) \Delta z(n)) \geq 0$, $a(n) \Delta z(n)$ and $z(n) > 0$ eventually. Suppose $d = \lim\inf_{n \to \infty} y(n) > 0$. Then $y(n) > \frac{d}{2}$. From this inequality and (6.1.5) it follows that $\lim_{n \to \infty} a(n) \Delta z(n) = \infty$ which is a contradiction. Hence $\lim_{n \to \infty} \inf y(n) = 0$. Then there is an increasing sequence of integers $\{n_i\}$ such that $\lim_{i \to \infty} y(n_i - k) = 0$. Suppose that $c = \lim_{n \to \infty} z(n) > 0$. Passing to the limit in the equality $z(n_i) = y(n_i) + p(n_i) y(n_i - k)$, we obtain that $\lim_{n \to \infty} y(n_i) = c$. On the other hand

$$z(n_i + k) = y(n_i + k) p(n_i + k) y(n_i) > p_1 y(n_i).$$

Taking the limit in the last inequality we obtain $c > p_1 c > c$. Hence $\lim_{n \to \infty} z(n) = 0$ and since $z(n) > y(n)$, we have $\lim_{n \to \infty} y(n) = 0$. The case $\{y(n)\}$ eventually negative can be proved analogously and the proof is now complete. \qed