A.P. de-condolle (1813) was the first to introduce the term “taxonomy” into biological terminology. It is often known as systematic according to Cronquist (1968) is “a study aimed at producing a system of classification of organisms, which best reflects the totality of their similarities and differences. This aim is achieved not in single step. Taxonomic studies involve several steps, which are identification, nomenclature, classification and documentation.

During the thousand of the years of early human existence many natural material were identified for combating human ailments either by instinct or intuition or trial and error. The earliest mention of the medicinal use of plants has been found in ‘Rig Veda’, which was written between 4000 and 1600 B.C. In the “Atharva Veda”, we find the more varied use of drugs. It is in the “Ayurveda”, which is considered as an “Upa Veda” that definite properties of drugs and their uses have been given in great detail. “Chakra Samhita” is another earliest treatise on “Ayurveda” (600 BC) which lists a total of 341 plants and plant products for use in health management. “Susruta Samhita” also dealt with plants related to medicine (Bhattacharjee, 1998).

In the remote past two simple ideas for herbal treatment developed that were of later extended and called “Doctrine of Signatures” and the “Doctrine of Contraries” the farmer was based on the appearance or character of the plant as a clue to its uses as a medical treatment for instance the red juice that can we pressed from the flowers of St. Johns wort (Hypericum perforatum) indicated its use as a wound herb, and the fact that parsley piert or breakstone (Alchemilla arvensis) often grows on
stony ground was a sign that it was a treatment for gravel or stone in the bladder or kidney. The later idea, the doctrine of contraries attempted to restore the natural balance within a diseased body by using herbs with properties opposed to the symptoms of illness. Thus cool moist herbs would be used to counteract a hot, drying fever.

The history of medicinal plants can be traced from the remote past. Useful information on plants has been recorded rather indirectly by historians, archeologists, ethnobotanists, folklorists, travels, tribal and rural physicians. However, the importance of medicinal plants was realized by early men, during the course of their struggle for existence. This experience and experimentation with plants occurred into a body of knowledge which tested by a time grew an integral part of their culture and passed down orally from one generation to another as no mode for recording events existed in the prehistoric times. The knowledge of medicinal plants were translated and preserved in the form of signs, symbols, inscription, painting and carvings with the development of civilization. During these days people knew about the medicinal plants and the information were also documented in the ancient manuscripts.

Materia medica was well known to the ancient Hindus. Later, during the Buddhist period, considerable progress was made and medicinal plants were cultivated under the direction of highly qualified specialists. During the centuries that have gone by the material medica of the indigenous system of medicine has become extensive and heterogeneous. The vegetable materia medica has been built up in the course of centuries and every region of our country has contributed to
its development. The practitioners of various indigenous systems tried to utilize the locally growing plants as far as possible and accepted those, which were found useful after trial for the treatment of diseases. After sacred Vedas, there is no systematic record about the medicinal plants. However, fragmentary information on the use of medicinal plants is scattered and some of it is found in books and periodicals many of which are out of print.

Plants are used as drug predates written human history that can be traced back to the ancient civilizations or pre-times. The earliest written record of the preparation and use of medicine from plants is in the ‘Rigveda’, the earliest scripture of the hindus (4500-1600BC). The Vedic Aryans were familiar with about 100 medicinal plants. In ‘Atharva Veda’, which was a later work, the uses of medicinal plants described are more varied. This was followed by the monumental contributions like ‘Charak Samhita’ (1000-800BC), ‘Sushrut Samhita’ (800-700BC) and vagbhatta’s ‘Astanga Hridaya’. A number of books on Ayurveda and hindu botany were written by learned scholars, such as Bhikshu Atreya, Patanjali, Nagarjun, Madhavaker, Chakradatta, Sarangadhar, Sankara and bangasen (500-100BC), who expanded the vegetable materia medica of the Hindus.

Studies in archaeology, paleobotany, and ethnography revealed the close relationship between plants and man. In India 2000-1000 BC mentions are there in Rig-Veda and Atharveda about the uses of plants.

According to World Health Organization (WHO), it has listed 21,000 plant species which are used for medicinal purposes around the
world. Out of the total number of flowering plant species known (about 17,500) in India, there are more than 4,000 species used in medicines, about 3,000 for food, nearly 700 as traditional religious and social purposes, about 500 yield fibers, 400 as fodder, 300 yield gum and about 100 species are used to extract essential oils and scents. Indian biodiversity is a source of several life saving drugs and novel chemicals. About 90% of all Indian medicines are obtained from robbed by pharmaceutical companies from the third world countries, including India. India is the largest producer of medicinal herbs and called as botanical garden of the world (Seth et al. 2004) and herbal medicines for curing human illness medicinal plants form the only easily accessible health care alternative for the most of our population in rural and tribal area. About 64% of the total global population remains dependent on traditional medicines for their health care’s system, whereas about 85% of the rural population of India depends of wild varieties of plants for the treatment of various diseases they suffer from.

Floristic and Ethno-medicinal work in India and Abroad:

There are several works done on the studies based on flora and the uses of various medicinal plants by tribes in India, such workers like Kirtikar and Basu (1935) documented of Indian Medicinal Plants; Jain and Tarafdar (1963) studied in Indian Ethnobotany that use of local knowledge for snake bites among Adivasis of Central India. Jain (1965) reported on medicinal plant lore of Tribals of Bastar; Jain (1975) have described of ethnobotany of central Indian Tribals; Bennet (1983) reported the ethnobotanical Studies in Sikkim; Dey (1988) documented the uses of Indian medicinal
plants in Ayurvedic preparations; Pandey (1989) has mentioned the
Plants of human kind - Sacred plants of India; Jain (1991) has been
written Dictionary of Indian folk medicine and ethnobotany; Kapur et al.
(1992) have listed the medicinal flora of Majouri-Kirchi forests (Jammu
and Kashmir State); Sastri, et al., (1996) have been revised Charak
Drdbhala: The Charak Samhita; Kala (1998) conducted survey on
ethnobotanical plants and importance of propagation of rare medicinal
herbs for farmers; Maikhuri et al., (1998) studied about medicinal plants
cultivation and biosphere reserve management; Pandey (1998)
documented the ethno-forestry of local knowledge for sustainable
forestry and livelihood security; Venu (1998) has reviewed of floristic
diversity inventory and monitoring methodology; Chowdhury (2000) has
been written book on ethno-botany; Banerjee (2002) has described the
Public policy and Ayurveda. Ganesan et al., (2004) have conducted
survey on ethnomedicinal plants of lower Palni Hills of Tamil Nadu;
Katewa et al., (2004) have listed folk herbal medicines from tribal area of
Rajasthan; Khan et al., (2004) have documented the ethnomedicinal
plants of Uri, Kashmir Himalaya.

Ethno-botanical wealth of Bhadra wild life sanctuary in Karnataka
has enamurated by Parinitha et.al., (2004). Pharmaceutical uses of
valuation medicinal plants have documented by Pushpam (2004). Rajasab & Isaq (2004) have documented of folk knowledge on edible wild
plants of North Karnataka; Saxena and Kuswaha (2004) has described
about adoption of organic farming practices that utilizes for medicinal
plants; Sensarma (2004) recommended the conservation strategy of
biodiversity through traditional approach for plants; Shukla (2004) has studied the role of research in sustainable and profitable management of NWFP; Sinha et al., (2004) have reviewed on *Tinospora cordifolia* (Guduchi) and their therapeutic applications; Ethnobotanical plants of Chhattisgarh state have documented by Tirkey (2004); Regeneration status in natural habitats of *Nagesia wallichina* (Presl) in Goodrial Reserve Forest of Western Ghat has mentioned in his by Abhilash et al., (2005). Akimpou et al., (2005) have reported the traditional dye yielding plants of Manipur; Anand et al., (2005) have conducted survey on medicinal plants in Kollimalai hill tracts, Tamil Nadu; Bhardwaj (2005) has documented the ethnomedicinal plants used by the tribals of Mizoram to cure cuts and wounds; Jain et al., (2005) reported the medicinal plant diversity of Sitamata wildlife sanctuary, Rajasthan; Kala (2005) has described the medicinal plants, their indigenous uses, density, and conservation strategized in the Indian Himalayas; Khalil (2005) classified of quantitative structure of true mangroves present in Managal forests of Tellichheri, Pappinissery and Kunhimaangalam of Kannur district. Ethnomedicinal plant resources of Jaunsari tribe of Garhwal Himalaya, Uttaranchal have documented by Bhatt et al., (2006). Ignacimuthu, et al., (2006) have investigated ethnobotanical knowledge among tribes in Madurai District of Tamil Nadu.

Kala (2006) have described the ayurvedic herbal formulation which are preserving by Vaidyas of the Uttaranchal Himalaya Region; Kotewa, et al., (2006) have worked on poisonous plants of the southern Aravalli hills of Rajsthan; Muthu et al., (2006) have documented the
medicinal plants that have been used by traditional healers in Kancheepuram district of TamilNadu; Kumar et al., (2007) described the ethnopharmacological approaches to medicinal plants of India; Jagpat et al., (2008) have reported the endemic and RET plants that utilised by the Korku tribe are ethnomedicobotanical important of Amravati district, Maharashtra; Reddy, (2008) reviewed ethnobotany of Andhra Pradesh; Das, et al., (2009) documented the ethnobotanical plants that used by Tripuri and Reangf tribes of Tripura; Gupta et al., (2009) documented ethnomedicinal Plants that have been used by Gond Tribe of Bhandara District, Maharashtra in the Treatment of Diarrhoea and Dysentery; Rajakumar et al., (2009) described the ethno-medicinal application of plants in the eastern region of Shimoga district, Karnataka. Singh & Singh (2009) documented the ethnobotanical medicinal plants in Chandauli District of Uttar Pradesh.

Chaudhary (2010) enamurated taxa of family Fabaceae that have potential of local medicinal values in Vindhya Region Uttar Pradesh; Bisht and Purohit (2010) described the medicinal and aromatic plants diversity of Asteraceae in Uttarakhand; Gupta, et al., (2010) documented the ethnomedicinal plants that have been used by Gond tribe of Bhandara district, Maharashtra; Jain, et al., (2010) have listed the medicinal plants used among tribes in Satpura region of Dhule and Jalgaon district of Maharashtra; Joshi, et al., (2010) described the ethnomedicinal uses of plant resources of the Haigad Watershed in Kumaun Himalaya; Prakasha, et al., (2010) described the folk medicine of NR Pura taluk in Chikmagalur district of Karnataka; Rajakumar, et
al., (2010) have observed the traditional herbal medicinal knowledge in Sagar Taluk of Shimoga district, Karnataka; Reddy, et al., (2010) documented the medicinal plants that have been used by ethnic people of Medak district, Andhra Pradesh; Revathi & Parimelazhagan (2010) observed the traditional knowledge about medicinal plants that have been used by the Irula tribe of Hasanur hills, Erode district TamilNadu; Bartwal, et al., (2011) described the diversity of ethnomedicinal plants in Tons valley Uttarakhand that have been used by among the Jaunsaries; George, et al., (2011) conducted the biodiversity survey of trees and ornamental plants in Karunya University, Coimtore; Khongsai, et al., (2011) observed the ethnomedicinal plants used by different tribes of Arunachal Pradesh; Pawar, et al., (2011) have enumerated the medicinal plants along kanher and mahadare reservoir from Satara District, Maharashtra; Sarvalingam, et al., (2011) observed the curative climbers of Maruthamalai hills in the Southern Western Ghats of TamilNadu; Verma, et al., (2011) described the diversity of plant species in Ropa-Giovung Vally in Cold Deserts of District Kinnaur, Himachal Pradesh; Ayyanar (2012) has reviewed the Indian Medicinal Plants as a source of therapeutic agents; Bahekar, et al., (2012) have reviewed on medicinal plants used in scorpion bite treatment; Gupta, et al., (2012) have documented the poly-herbal formulation from traditionally used medicinal plants as a remedy for oral hygiene; Kanthale, et al., (2012) documented the ethnomedicinal plants and their utilization by tribals of Mahur range forest of Nanded district of Maharashtra; Meenaa, et al., (2012) conducted survey on ethno medicinal plants from Baran District
of Rajasthan; Naik, et al., (2012) described the ethnoveterinary uses of medicinal plants among the Lambani community in Chitradurga district, Karnataka; Pandaa, et al., (2012) have investigated the ethnomedicinal plants in indigenous herbal therapy used in the traditional treatment of diabetes in Odisha; Rudrapal, et al., (2012) observed the ethnomedicinal plants used by traditional healers in East Godavari district of Andhra Pradesh; Shankar, et al., (2012) have documented the medicinal plants that used in traditional medicine in Mizoram; Shankara and Majumdar (2012) recommended the conservation strategy of traditional medicinal practices and pharmaceutically important medicinal plants in Mizoram; Sharma, et al., (2012) conducted the ethnobotanical survey on medicinal plant of Cassia spp; Azad, et al., (2013) recorded ethnomedicinal plants from Rajouri-Poonch districts of J&K state; Bandna, et al., (2013) have reviewed about phytopharmaceutical of Morus alba; Barnali (2013) reported phytochemical constituents of some medicinal plant species used in recipe during ‘Bohag Bihu’ in Assam; Baruah, et al., (2013) documented thr ethnomedicinal plants that have been used by Adi-Minyong tribe of Arunachal Pradesh; Galav, et al., (2013a) investigated the ethnoveterinary medicines that have been used by tribals of Tadgarh-Raoli wildlife sanctuary, Rajasthan; Galav, et al., (2013b) described the tradicinal veterinary medicines used by livestock owners of Rajasthan; Jagatheeswari, et al., (2013) reviewed an important of medicinal plant Acalypha indica and its traditional uses, pharmacological properties; Kamble, et al., (2013) reviewed on antiulcer medicinal plants; Kataria, (2013) described the ethnopharmacological

Lingaiah, (2013) conducted an ethnobotanical survey of medicinal plants that used by traditional healers of Adilabad District, Andhra Pradesh; Maiti, et al., (2013) observed the ethno-veterinary practices for ephemeral fever of Yak: A participatory assessment by the Monpa tribe of Arunachal Pradesh; Mathur, (2013) recommended of economic assessment and conservation priorities of the Indian Thar desert medicinal plants; Mishra, (2013) documented the ethnoveterinary medicinal plants used for cattle wounds in Polasara block, Ganjam district, Orissa; Murthy, et al., (2013) observed the medicinal plants used in traditional practices to treatment of respiratory disorders in Bellary district, Karnataka; Naidu, et al., (2013) reported the ethnic remedies against snake bite from Kotia hills of Vizianagaram district, Andhra Pradesh; Padal, et al., (2013) investigated of Medicinal Plants that have been used by the tribes of Pedabayalu Mandalam, Visakhapatnam district, Andhra Pradesh; Parmar, et al., (2013) studied about phytochemical, pharmacognostical and microbial screening of
Achyranthes aspera (Amaranthaceae); Patel, et al., (2013) reported of herbal medicine, cure to arthritis; Ramachandran, (2013) documented of knowledge and uses of wild edible plants by Paniyas and Kurumbas of Western Nilgiri, Tamil Nadu; Randhava, (2013) reported in his ethno-botanical study of medicinal plants used in Ramdass, Ajanala District of Amritsar, Punjab; Rasingam, (2013) reported the indigenous brooms used by the aboriginal inhabitants of Nilgiri Biosphere Reserve, Western Ghats; Rathi,et al., (2013) documented the ethno-botanical notes on Houttuynia cordata in North-Eastern region of India; Reddy, (2008) reviewed ethnobotany of Andhra Pradesh; Jitin (2013) studied on ethnobotanical study of medicinal plants in Taindol Village, District Jhansi, Region of Bundelkhand, Uttar Pradesh; Sadale, (2013) conducted a survey on ethno-medicinal plants of Ajara tahsil, district Kolhapur, Maharashtra; Shankar, (2013) documented the medicinal plants that have been used in traditional medicine in Aizawl and Mamit Districts of Mizoram; Shukla, et al., (2013) conducted a survey for documentation of traditional medicinal plants that have been used in treatment of infectious diseases of Uttar Pradesh; Murthy, et al., (2013) observed the medicinal plants that have been used in the treatment of Gastrointestinal disorders in Bellary district, Karnataka; Singh, et al., (2013) have documented the ethnomedical plants that have been used for dental care in Sundargarh, Mayurbhanj, Angul and Balagir district of Odisha; Talukdar (2013) enamurated the ethno-medicinal plants that have been used by tribal communities in Hili block of Dakshin Dinajpur distric, West Bengal, Tripathi, et al., (2013) documented the rare ethno
medicinal plants with their uses and recommended conservation strategies; Yadav, et al., (2013) have studied the ethnobotanical uses of plants by tribal dwellers in Narmada Forest Division, Gujarat; Bhatt, (2014) investigated about indigenous knowledge on fibre extraction of Sunnhemp in Bundelkhand Region, India.

Naidu, et al., (2014) recorded the medicinal plants in Bhupdeopur Forest, Raigarh Chhattisgarh in Central India; Rana, et al., (2014) documented the uses of local plants among the tribal communities of Pangi Valley of District Chamba in Cold Desert Himalaya; Sarvalingam & Sivalingam (2014) observed of wild edible plant resources that have been used by the Irulas of the Maruthamalai Hills, Southern Western Ghats, Coimbatore, Tamil Nadu; Seal, et al., (2014) described the nutritional potential of wild edible fruits, traditionally used by the local people of Meghalaya; Tasleem, et al., (2014) reviewed the anti diabetic agents from medicinal plants; Kala (2015) observed the herbal treatment for snakebites in Uttarakhand; Lal, et al., (2015) reported the tree species diversity, distribution and population structure in a tropical dry deciduous forests of Chhattisgarh; Mahant (2015) described the indigenous traditional healing care: belief & practices among tribals of South Bastar in Chhattisgarh; Bajpai, et al., (2016) reported the ethnomedicinal uses of tree species by Tharu tribes in the Himalayan Terai Region; Jadhav (2016) conducted survey of ethnobotanical and ethnomedicinal plants of Kadegaon Tahsil, Sangli (Maharashtra); Joshi, et al., (2016) reviewed Himalayan aromatic medicinal plants and their Ethnopharmacology, Volatile Phytochemistry, and Biological Activities;
Medisetti, et al., (2016) documented the ethnobotanical-medicinal plants that have been used by koya tribes in and around malluru hill region, warangal district, telangana; Prabhu and Vijayakumar (2016) have studied the traditionally used medicinal plants in Malayali Ethnic People of Pachamalai Hills, Tamil Nadu.

In abroad, significant contribution in the field of medicinal flora and ethnomedicine were done by workers like Jones (1941) described the nature and scope of ethnobotany; Faulks (1958) have written book an Introduction to ethnobotany; Schultes (1962) has mentioned the role of the ethno botany in the search for new medicinal plants; Whittaker (1962) classified of natural communities; Amare (1976) has documented the some common medicinal and poisonous plants used in Ethiopia folk medicine; Ford, (1978) described about ethnobotany: historical diversity and synthesis; Alcorn (1984) studied on ethno-botany; Oliver-Bever (1986) reported the medicinal plants of tropical West Africa; Dennis (1988) observed the herbal medicine among the Miskito of Eastern Nicaragua. Fluck (1988) worked in medicinal plants; Mabey (1988) has written book on “The complete herbal”; Akerele, et al., (1991) recommended the conservation of medicinal plants; Dung and Loi (1991) selected of traditional medicines for study; Manandhar (1991) reported the medicinal plants that have been used by Tamong tribe of Kavrepalanchowk district. Nepal; Ogunbodede (1991) described the role of traditional healers in dental care; Principe (1991) has mentioned his study that monetising the pharmacological benefits of plants; Bhattarai (1992) studied the medical ethnobotany in the karnali zone, Nepal; Wee

Yinggeling, Hainan Island, China; Kunwar, et al., (2010) documented about traditional herbal medicine for pharmacological appraisal in west Nepal; Maharaj, et al., (2010) have evaluated of selected South African ethnomedicinal plants as mosquito repellents against the Anopheles arabiensis mosquito in a rodent model. Osawaru and Dania-Ogbe (2010) studied the ethnomedical plant, Okra (Abelmoschus caillei) that has been used by tribes of South Western Nigeria; Qureshi, et al., (2010) reported the use of ethnomedicinal herbs from Northern part of Nara desert, Pakistan; Rainer, et al., (2010) studied on medicinal plants that have been used in Northern Peru for reproductive problems and female health; Alam, et al., (2011) documented the indigenous knowledge of medicinal plants of Chagharzai Valley, District Buner, Pakistan; Ashu, et al., (2011) studied the knowledge and practices of traditional healers in oral health in the Bui Division, Camroon; Khan, et al., (2011) described residual value analyses of the medicinal flora of the western Himalayas: The Naran Valley, Pakistan; Lhamo and Nebel (2011) have mentioned perception and attitudes of Bhutanese people on Sowa Rigpa, traditional Bhutanese medicine from Thimpu; Mahmood, et al., (2011) conducted ethnobotanical survey of common medicinal plants used by people of district Mirpur, AJK, Pakistan; Nedelcheva (2011) has observed usage of plants for weather and climate forecasting in Bulgarian folk traditions; Tabassum (2011) has illustrated role of natural herbs in the treatment of hypertension; Bernath (2012) has described how does the traditional herbal medicinal product directive promote the proper and widening application of medicinal plants?: Das, et al., (2012) conducted an

Ukwubile (2012) described anti-helminthic properties of Nigerian medicinal plants on Selected Intestinal Worms in Children (Age 5-13) in Ogurugu, South East, Nigeria; Addis, *et al.*, (2013) studied ethnobotany of wild and semi-wild edible plants of Konso ethnic community, South Ethiopia; Amiri and Joharchi (2013) investigated ethnobotanical knowledge of traditional medicinal plants that have been commercialized in the markets of Mashhad, Iran; Awan and Murtaza (2013) observed ethnomedicinal uses of plants of Family Solanaceae Muzaffarabad Division Azad Jammu and Kashmir, Pakistan; Gurib-Fakim and Mahomoodally (2013) have reviewed African flora as potential sources of medicinal plants: Towards the chemotherapy of major parasitic and other infectious diseases; Ita, (2013) observed medicinal plants that have been used in traditional medicine by rural communities in Cross River

Tribal remedies and floristic work in Madhya Pradesh:-

Tribal remedies for various ailments and were investigated and work on flora worked by the workers like Jain, (1963 a, b, c, d) Studied on Indian
ethno-botany that have been described about medicinal plants used by tribes of Madhya Pradesh; Jain, (1965) explored medicinal plant that have been applied by tribals of Bastar; Saxena, and Shukla, (1971) wrote about medicinal plants of Patalkot (Chhindwara) Madhya Pradesh; Bhatnagar, et al., (1973) studied on medicinal flora of Ghatigaon Forests, Gwalior; Jain, (1975) wrote about ethno-botany of central Indian Tribals; Sahu, (1982) studied on ethno-medicinal plants that have been used against various disorders among tribal women; Sahu, (1983) contributed towards the ethno-botanical plants that have been used against diarrhea and dysentery; Maheshwari, (1984) conducted ethnobotanical survey of Mandla district; Mishra, and Sahu, (1984) explored the Euphorbiaceous plants that used in medicine by the tribals: Brijlal, et al., (1985) observed the ethnobotanical utilization of Lichens by tribals; Rai, (1987) studied the ethno-medicinal plants of Patalkot and Tamiya (Chhindwara) that have been used as tonic; Lal Brij, (1988) published paper on traditional remedies for bone fracture among the tribal’s of Madhya Pradesh.

Saxena, (1988) Observed on ethnobotany of Madhya Pradesh; Rai, and Ojha, (1989) studied ethno-medicinal plants of Chhindwara District that have been used in stomach disorders; Oommachan, et al., (1990) documented ethno-botanical observations at Pachmarhi (Madhya Pradesh); Prasad, et al., (1990) studied the socio economic ethno-medico-botanical plants at Patalkot of bhariya tribe; Shah, and Singh, (1990) reported Hitherto phytotherapeutical uses from tribal pockets of Madhya Pradesh; Buch, (1991) described the forest types and forest dwellers of M. P.; Dwivedi, (1991) recommended the conservation strategy of endangered and
and Nath, (2005) documented the lesser known oral herbal contraceptives in folk claims as anti fertility and fertility induced plants in Baster region of Chhattisgarh; Rai, and Nath, (2005) studied the medicinal plants that used by traditional herbal healer in central India.

Nath, and Khatri, (2010) documented the traditional knowledge on ethno-medicinal uses prevailing in tribal pockets of Chhindwara and Betul district; Shukloa, et.al., (2010) explored the ethno medicinal plants of Rewa district; Tripathi, et.al., (2010) studied the ethnomedicinal plants that used to treat gynecological disorders by tribal people; Wagh, and Jain, (2010a) worked on traditional herbal remedies among Bheel and Bhilala tribes of Jhabua District; Wagh, and Jain, (2010b) observed

tribals of Rewa District; Ahirwar, (2013) described the socio-religious importance of plants in Bundelkhand Region; Bharti, et.al., (2013) wrote about ethno medicinal plants that used by tribal communities in Vindhy region of Rewa and Sidhi District; Nag, and Hasan, (2013) worked on ecological study of medicinal wild herbs in Mayur Garden at Bhopal city, M.P.; Singh, et.al., (2013) worked on ethno-botany and uses of non-graminaceous forage species of Chitrakoot region of M.P.; Sthapak, (2013) observed the ethanobotanic plants that used by tribal people in Keshli Tehsil District Sagar M.P.; Bhatt, et.al., (2014) investigated the indigenous knowledge on fibre extraction of Sunnhemp in Bundelkhand Region.

Gwalwanshi, et.al., (2014a) studied the biodiversity of ethno medicinal plants that used by traditional healers in selected remote villages of Panna district; Gwalwanshi, et.al., (2014b) documented the indigenous knowledge of ethno-medicinal plants of Panna District; Gwalwanshi, et.al., (2014c) reported the ethnomedicinal and ecological studies on Fabaceae of Runj Forest Panna; Sahu, et.al., (2014) reviewed the medicinal plant of morning glory family convolvulaceae; Tiwari, et.al., (2014) documented of ethnomedicinal knowledge among the tribes of Achanakmar-Amarkantak Biosphere Reserve; Tiwari, (2014) published paper on assessment of traditional medicinal plants in Balaghat District (M.P.); Bramhe, (2015) documented the floristic studies in Govt. J. S. T. P. G. College Balaghat Campus, M.P.