LIST OF TABLES

Table 2.1: Design shear strength of Concrete τ_c (MPa).......................... 37
Table 2.2 Cost of standard grade RCC and RCC with Fibers(SFRC)... 63
Table 3.1: Details of phase wise experimentation................................ 67
Table 3.2: Details of phase wise experimentation............................ 68
Table 3.3: List of Parameters for Experimental Programme............. 68
Table 3.4: Details of length of the beams for different a/d ratios... 70
Table 3.5: Phase –I List of beams.. 71
Table 3.6: Phase –II List of beams.. 72
Table 3.7: Phase –III List of beams... 73
Table 3.8: Phase –IV List of beams... 74
Table 3.9: Properties of Cement.. 77
Table 3.10: Properties of Fine Aggregate..................................... 78
Table 3.11: Specifications used for Fine Aggregate......................... 78
Table 3.12: Properties of Coarse Aggregate................................ 79
Table 3.13: Properties of GGBS specified by the manufacturer..... 81
Table 3.14: Properties of the Fly Ash... 82
Table 3.15: Properties of Steel fibers... 83
Table 3.16: Mix Design Specifications.. 84
Table 3.17: Details of Trail Mixes.. 84
Table 3.18: Mix Proportion of High Strength Concrete Adopted..... 85
Table 4.1: Summary of Phase –I Test Results................................. 127
Table 4.2: Summary of Phase –II Test Results............................... 137
Table 4.3: Summary of Phase –III Test Results............................. 142
Table 4.4: Summary of Phase –IV Test Results............................. 147
Table 5.1 SOLID65 Additional Concrete Material Data............... 163
Table 5.2: Link8 Inputs and Specifications.................................. 165
Table 5.3: Real constants of concrete for Phase-I and III.............. 166
Table 5.4: Real constants of reinforcement for Phase-I and III..... 166
Table 5.5: Real constants of reinforcement for Phase-II and IV..... 166
Table 5.6: Parameters used For R and SR series beams of Phase-I and II, in ANSYS.. 173
Table 5.7: Parameters used for FR, SFR, CFR and CFSR series of beams with 0.4% fibers in ANSYS................................. 174
Table 5.8: Parameters used for FR, SFR, CFR and CFSR series of beams with 0.8% fibers in ANSYS.. 175
Table 5.9: Parameters used for FR, SFR, CFR and CFSR series of beams with 1.2% fibers in ANSYS................................. 176
Table 6.0: Material models for Phase-I ‘R’ series of Beams in ANSYS... 177
Table 6.1: Material models for Phase-I ‘FR’ series of Beams in ANSYS... 177
Table 6.2: Material models for Phase-II ‘SR’ series of Beams in ANSYS... 177
Table 6.3: Material models for Phase-III & IV ‘CFR and CFSR” series of Beams in ANSYS.. 178
Table 6.4: Details of models created in ANSYS.......................... 179
Table 6.5: ANSYS Mesh Attributes for all series of beams........... 184
Table 6.6: Basics required for the Analysis.............................. 187
Table 6.7: Non Linear Analysis options................................. 188
Table 6.8: Split tensile strength of cylinders for varying volume fraction of fibers... 205
Table 6.9: Experimental and Empirical shear stress (MPa) of the specimens Without Shear Reinforcement.......................... 215
Table 6.10: Experimental and Empirical shear stress (MPa) of the specimens with Shear Reinforcement.............................. 216
LIST OF FIGURES

Figure 1.1 Types of Fibers.. 6
Figure 1.2: Variation of Stress and Forces in a Simply Supported Beam.. 9
Figure 1.3: Stress at a point on neutral axis of the beam......... 10
Figure 1.4: Stress at point near the tension Zone of the beam..... 11
Figure 1.5: Typical Failure Pattern proposed by Bresler and Scordelis.. 14
Figure 1.6: Shear resisting components of beam without stirrup reinforcement.. 14
Figure 1.7: Modes of Failure... 17
Figure 1.8: Shear resisting components of beam with web reinforcement.. 19
Figure 1.9: Shear failure of structural elements during Bhuj earthquake in 2001.. 20
Figure 2.1: Truss Analogy method for Shear Mechanism........ 38
Figure 2.2: Typical Beam showing shear critical regions........... 63
Figure 3.1: Details of load points, support points and shear span.. 70
Figure 3.2: Details of the typical beam without shear reinforcement.. 75
Figure 3.3: Details of the typical beam with shear reinforcement. 75
Figure 3.4: Details of the typical beam without shear reinforcement and with fiber in critical regions................. 75
Figure 3.5: Details of the typical beam with shear reinforcement and with fiber in critical regions................. 76
Figure 3.6: Straight steel fibers with Aspect ratio = 75.......... 83
Figure 3.7: Formwork with the Reinforcement......................... 86
Figure 3.8: Fibers ready for Dispensing................................. 88
Figure 3.9: Casting of beams in progress – compaction using needle vibrator.. 88
Figure 3.10: Arrangement of test specimen............................. 90
Figure 3.11: 100 ton loading frame - Arrangement of test specimen.. 91
Figure 4.1: Load-deflection relation for R01............................. 93
Figure 4.2: Load-deflection relation for R02............................. 93
Figure 4.3: Load-deflection relation for R03............................. 94
Figure 4.4: Load-deflection relation for R04............................. 94
Figure 4.5: Load-deflection relation for FR0.41......................... 95
Figure 4.6: Load-deflection relation for FR0.42......................... 95
Figure 4.7: Load-deflection relation for FR0.42......................... 96
Figure 4.8: Load-deflection relation for FR0.44......................... 96
Figure 4.9: Load-deflection relation for FR0.81......................... 97
Figure 4.10: Load-deflection relation for FR0.82......................... 97
Figure 4.11: Load-deflection relation for FR0.83......................... 98
Figure 4.12: Load-deflection relation for FR0.84......................... 98
Figure 4.13: Load-deflection relation for FR1.21......................... 99
Figure 4.14: Load-deflection relation for FR1.22
Figure 4.15: Load-deflection relation for FR1.23
Figure 4.16: Load-deflection relation for FR1.24
Figure 4.17: Load-deflection relation for SR01
Figure 4.18: Load-deflection relation for SR02
Figure 4.19: Load-deflection relation for SR03
Figure 4.20: Load-deflection relation for SR04
Figure 4.21: Load-deflection relation for SFR0.41
Figure 4.22: Load-deflection relation for SFR0.42
Figure 4.23: Load-deflection relation for SFR0.43
Figure 4.24: Load-deflection relation for SFR0.44
Figure 4.25: Load-deflection relation for SFR0.81
Figure 4.26: Load-deflection relation for SFR0.82
Figure 4.27: Load-deflection relation for SFR0.83
Figure 4.28: Load-deflection relation for SFR0.84
Figure 4.29: Load-deflection relation for SFR1.21
Figure 4.30: Load-deflection relation for SFR1.22
Figure 4.31: Load-deflection relation for SFR1.23
Figure 4.32: Load-deflection relation for SFR1.24
Figure 4.33: Load-deflection relation for CFR0.41
Figure 4.34: Load-deflection relation for CFR0.42
Figure 4.35: Load-deflection relation for CFR0.43
Figure 4.36: Load-deflection relation for CFR0.44
Figure 4.37: Load-deflection relation for CFR0.81
Figure 4.38: Load-deflection relation for CFR0.82
Figure 4.39: Load-deflection relation for CFR0.83
Figure 4.40: Load-deflection relation for CFR0.84
Figure 4.41: Load-deflection relation for CFR1.21
Figure 4.42: Load-deflection relation for CFR1.22
Figure 4.43: Load-deflection relation for CFR1.23
Figure 4.44: Load-deflection relation for CFR1.24
Figure 4.45: Load-deflection relation for CFSR0.41
Figure 4.46: Load-deflection relation for CFSR0.42
Figure 4.47: Load-deflection relation for CFSR0.43
Figure 4.48: Load-deflection relation for CFSR0.44
Figure 4.49: Load-deflection relation for CFSR0.81
Figure 4.50: Load-deflection relation for CFSR0.82
Figure 4.51: Load-deflection relation for CFSR0.83
Figure 4.52: Load-deflection relation for CFSR0.84
Figure 4.53: Load-deflection relation for CFSR1.21
Figure 4.54: Load-deflection relation for CFSR1.22
Figure 4.55: Load-deflection relation for CFSR1.23
Figure 4.56: Load-deflection relation for CFSR1.24
Figure 4.57: Behaviour of HSC beams without shear reinforcement for a/d=1 with 0, 0.4, 0.8 and 1.2% fiber
Figure 4.58: Behaviour of HSC beams without shear reinforcement for a/d=2 with 0, 0.4, 0.8 and 1.2% fiber
Figure 4.59: Behaviour of HSC beams without shear reinforcement for a/d=3 with 0, 0.4, 0.8 and 1.2% fiber
Figure 4.60: Behaviour of HSC beams without shear reinforcement for a/d=3 with 0, 0.4, 0.8 and 1.2% fiber
Figure 4.61: Crack patterns of beams without shear reinforcement and fiber
Figure 4.62: Crack patterns of beams without shear reinforcement and with 0.4% fibers
Figure 4.63: Crack patterns of beams without shear reinforcement and with 0.8% fibers
Figure 4.64: Crack patterns of beams without shear reinforcement and with 1.2% fibers
Figure 4.65: Energy Absorption capacity of specimens
Figure 4.66: Behaviour of HSC beams with shear reinforcement for a/d=1 with 0, 0.4, 0.8 and 1.2% fiber
Figure 4.67: Behaviour of HSC beams with shear reinforcement for a/d=2 with 0, 0.4, 0.8 and 1.2% fiber
Figure 4.68: Behaviour of HSC beams with shear reinforcement for a/d=3 with 0, 0.4, 0.8 and 1.2% fiber
Figure 4.69: Behaviour of HSC beams with shear reinforcement for a/d=4 with 0, 0.4, 0.8 and 1.2% fiber
Figure 4.70: Crack patterns of beams with shear reinforcement and without fiber
Figure 4.71: Crack patterns of beams with shear reinforcement and 0.4% fiber
Figure 4.72: Crack patterns of beams with shear reinforcement and 0.8% fiber
Figure 4.73: Crack patterns of beams with shear reinforcement and 1.2% fiber
Figure 4.74: Behaviour of HSC beams without shear reinforcement for a/d=1 with 0.4, 0.8 and 1.2% fiber in critical regions
Figure 4.75: Behaviour of HSC beams without shear reinforcement for a/d=2 with 0.4, 0.8 and 1.2% fiber in critical regions
Figure 4.76: Behaviour of HSC beams without shear reinforcement for a/d=3 with 0.4, 0.8 and 1.2% fiber in critical regions
Figure 4.77: Behaviour of HSC beams without shear reinforcement for a/d=4 with 0.4, 0.8 and 1.2% fiber in critical regions
Figure 4.78: Crack patterns of beams without shear reinforcement and 0.4% fiber in critical regions
Figure 4.79: Crack patterns of beams without shear reinforcement and 0.8% fiber in critical regions
Figure 4.80: Crack patterns of beams without shear reinforcement and 1.2% fiber in critical regions
Figure 4.81: Variation of test results for Phase-I and Phase-III specimens

Figure 4.82: Behaviour of HSC beams with shear reinforcement for a/d=1 with 0.4, 0.8 and 1.2% fiber in critical regions

Figure 4.83: Behaviour of HSC beams with shear reinforcement for a/d=2 with 0.4, 0.8 and 1.2% fiber in critical regions

Figure 4.84: Behaviour of HSC beams with shear reinforcement for a/d=3 with 0.4, 0.8 and 1.2% fiber in critical regions

Figure 4.85: Behaviour of HSC beams with shear reinforcement for a/d=4 with 0.4, 0.8 and 1.2% fiber in critical regions

Figure 4.86: Crack patterns of beams with shear reinforcement and 0.4% fiber in critical regions

Figure 4.87: Crack patterns of beams with shear reinforcement and 0.8% fiber in critical regions

Figure 4.88: Crack patterns of beams with shear reinforcement and 1.2% fiber in critical regions

Figure 4.89: Variation of test results Phase-II and Phase-IV specimens

Figure 4.90: Behaviour of HSC beams with a/d = 1, 2, 3 & 4 with 0% fibers

Figure 4.91: Behaviour of HSC beams with a/d = 1, 2, 3 & 4 with 0.4% fibers

Figure 4.92: Behaviour of HSC beams with a/d = 1, 2, 3 & 4 with 0.8% fibers

Figure 4.93: Behaviour of HSC beams with a/d = 1, 2, 3 & 4 with 1.2% fibers

Figure 5.1: Numerical simulation in FEM

Figure 5.2: Typical Finite Element Geometries

Figure 5.3: Examples of Idealised Structural Elements

Figure 5.4: Continum Examples

Figure 5.5: Solid65 – 3-D reinforced concrete solid (ANSYS 1995)

Figure 5.6: Link8 Element for steel reinforcement

Figure 5.7: Typical uniaxial compressive and tensile stress-strain curve for concrete (Bangash [94])

Figure 5.8 – Uniaxial Stress–Strain Curve

Figure 5.9: ANSYS modeled beam for a/d = 1 without shear Reinforcement

Figure 5.10: Cross section of ANSYS modeled beam for a/d = 1 without shear reinforcement

Figure 5.11: ANSYS modeled beam for a/d = 2 with shear reinforcement

Figure 5.12: Cross section of ANSYS modeled beam for a/d = 1 with shear reinforcement

Figure 5.13: ANSYS modeled beam for typical a/d ratio with fibers in critical regions for CFR and CFSR series

Figure 5.14: ANSYS modeled beam for typical a/d ratio after meshing with boundary conditions and load points

Figure 5.15: Experimental Vs Analytical Results for Phase-I
Figure 5.15: Experimental vs Analytical Results for Phase-I........ 190
Figure 5.16: Experimental vs Analytical Results for Phase-II........ 191
Figure 5.16: Experimental vs Analytical Results for Phase-II........ 192
Figure 5.17: Experimental vs Analytical Results for Phase-III........ 193
Figure 5.17: Experimental vs Analytical Results for Phase-III........ 194
Figure 5.18: Experimental vs Analytical Results for Phase-IV........ 195
Figure 5.18: Experimental vs Analytical Results for Phase-IV........ 196
Figure 5.19: ANSYS model Crack patterns of R01......................... 197
Figure 5.20: ANSYS model detailed Crack patterns of R01.............. 197
Figure 5.21: ANSYS model Crack patterns of SR02...................... 198
Figure 5.22: ANSYS model Detailed Crack patterns of SR02.......... 198
Figure 5.23: ANSYS model Crack patterns of SFR0.42.................. 198
Figure 5.24: ANSYS model Crack patterns of SFR0.84.................. 199
Figure 5.25: ANSYS model Crack patterns of CFR0.44.................. 199
Figure 5.26: ANSYS model Crack patterns of CFSR0.83................. 199
Figure 5.27: Experimental vs. ANSYS results - Influence of a/d ratio for R and SR beams... 201
Figure 5.28: Experimental vs. ANSYS results - Influence of a/d ratio for R and SFR beams with 0.4% fibers.............................. 202
Figure 5.29: Experimental vs. ANSYS results - Influence of a/d ratio for R and SFR beams with 0.8% fibers.............................. 202
Figure 5.30: Experimental vs. ANSYS results - Influence of a/d ratio for FR and SFR beams with 1.2% fibers............................ 203
Figure 5.31: Experimental vs. ANSYS results - Influence of a/d ratio for CFR and CFSR beams with 0.4% fibers.......................... 203
Figure 5.32: Experimental vs. ANSYS results - Influence of a/d ratio for CFR and CFSR beams with 0.8% fibers.......................... 204
Figure 5.33: Experimental vs. ANSYS results - Influence of a/d ratio for CFR and CFSR beams with 1.2% fibers.......................... 204
Figure 5.34: Variation of Tensile Strength (Dimension Less) with volume fraction of fibers (Vf - 0%, 0.4%, 0.8%, 1.2%, and 1.6%). 206
Figure 5.35: Variation of Shear stress with SIP for beams without shear reinforcement... 208
Figure 5.36: Variation of Shear stress with SIP for beams with shear reinforcement... 209
Figure 5.37: Variation of Shear stress with SIP for beams without shear reinforcement and fiber in critical regions................. 210
Figure 5.38: Variation of Shear stress with SIP for beams without Shear Reinforcement and fiber in critical regions................. 211
Figure 5.39: Variation of Shear stress with SIP for beams without Shear Reinforcement... 212
Figure 5.40: Variation of Shear stress with SIP for beams without Shear Reinforcement... 213
Figure 5.41: Variation of Experimental and Empirical Shear stress without shear reinforcement... 214
Figure 5.42: Variation of Experimental and Empirical Shear stress with shear reinforcement... 217
ABBREVIATIONS

RC Reinforced Concrete.
SFRC Steel Fiber Reinforced Concrete.
HSC High Strength Concrete.
HSSFRC High Strength Steel Fiber Reinforced Concrete.
FEM Finite Element Method.
SIP Shear Influencing Parameter.

NOTATIONS

\(V_{cx} \) - Shear carried by uncracked concrete.
\(V_i \) - Shear resistance due to aggregate interlock.
\(V_d \) - Shear resistance due to dowel action.
\(V_s \) - Shear carried by stirrups.
\(f'_c \) - Compressive strength of concrete at 28 days in MPa.
\(M_uV_u \) – Factored moment and Factored shear force at Cross section.
\(b_wd \) - Width and depth of Effective cross section in mm.
\(a/d \) – Shear span to Depth ratio.
\(\rho \) – Longitudinal Reinforcement Ratio.
\(p_t \) - Percentage of Tensile Reinforcement.
\(A_v \) - Area of the transverse reinforcement,
\(f_y \) - Yielding stress of steel
\(b_w \) - The web width.
\(A_{svw} \) – Area of shear reinforcement.
\(s \) – Spacing of shear reinforcement.
\(f_{ywd} \) - The yield strength of the shear reinforcement,
\(V_{us} \) - Strength of shear reinforcement.
\(A_{sv} \) - Total Cross- section area of stirrups.
\(S_v \) - Spacing of the stirrups.
\(\alpha \) – Angle between the inclined stirrups and the axis of the member not less than 45°
\(\sigma_c \) - The compressive strength at \(i^{th} \) point.
\(\varepsilon_{cu} \) - The strain at the ultimate compressive strength \(f'_c \).
\(\varepsilon_c \) - The strain at \(\sigma_c \) compressive strength.
\(E_c \) - Elasticity modulus of concrete.
\(f_t \) - tensile strength of concrete.
\(V_f \) - Volume fraction of Fibers.
\(V_c \) - Shear capacity (N)
\(\tau \) – Shear stress (MPa).
\(d \) – Effective depth (mm).
\(\theta \) – Crack angle.