LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURENO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Range and Mean of annual average (1990-98) of SPM in various cities.</td>
<td>13</td>
</tr>
<tr>
<td>1.2</td>
<td>Traffic in a metropolitan city of India</td>
<td>15</td>
</tr>
<tr>
<td>1.3</td>
<td>The steep growth in the number of vehicles in India</td>
<td>17</td>
</tr>
<tr>
<td>1.4</td>
<td>Air pollution from industries</td>
<td>18</td>
</tr>
<tr>
<td>1.5</td>
<td>Air pollution due to power plant</td>
<td>21</td>
</tr>
<tr>
<td>1.6</td>
<td>Domestic air pollution</td>
<td>22</td>
</tr>
<tr>
<td>1.7</td>
<td>Motorists clog a highway in Tamilnadu</td>
<td>35</td>
</tr>
<tr>
<td>1.8</td>
<td>Smoke casts a blanket due to firing</td>
<td>36</td>
</tr>
<tr>
<td>1.9</td>
<td>The air quality in India's major cities is fast deteriorating</td>
<td>37</td>
</tr>
<tr>
<td>2.1</td>
<td>The basic instrument design of an FTIR spectrometer</td>
<td>53</td>
</tr>
<tr>
<td>2.2</td>
<td>XRD Diffractometer System (3003 TT)</td>
<td>58</td>
</tr>
<tr>
<td>2.3</td>
<td>A schematic representation of X-ray diffraction by crystal</td>
<td>60</td>
</tr>
<tr>
<td>2.4</td>
<td>Spectrophotometer</td>
<td>64</td>
</tr>
<tr>
<td>2.5</td>
<td>Flame Photography</td>
<td>65</td>
</tr>
<tr>
<td>2.6</td>
<td>The MS2 Magnetic susceptibility meter</td>
<td>67</td>
</tr>
<tr>
<td>2.7</td>
<td>The general schematic diagram of SEM</td>
<td>73</td>
</tr>
<tr>
<td>2.8</td>
<td>Field Emission Scanning Electron Microscope with Energy Dispersive X-Ray</td>
<td>78</td>
</tr>
</tbody>
</table>
2.9 A block diagram of FESEM-EDX 78
2.10 The escape pulses and 'pile-up' pulses of FESEM-EDX 81
2.11 The model energy dispersiv spectrum (EDX) 82
2.12 The industrial output of Tamilnadu 83
2.13 The industrial production of major subsectors and electronic Hardware export 84
2..14 Location of sample collected areas in various places of Tamilnadu, India 87
3.1 The FTIR spectra of the sample numbers 1-10 94
3.2 The FTIR spectra of the sample numbers 11-20 95
3.3 The FTIR spectra of the sample numbers 21-30 96
3.4 The FTIR spectra of the sample numbers 31-40 97
3.5 The FTIR spectra of the sample numbers 41-50 98
3.6 The FTIR spectra of the sample numbers 51-60 99
3.7 The FTIR spectra of the sample numbers 61-70 100
3.8 The FTIR spectra of the sample numbers 71-80 101
3.9 The FTIR spectra of the sample numbers 81-90 102
3.10 The FTIR spectra of the sample numbers 91-100 103
3.11 The FTIR spectra of the sample numbers 101-111

3.12 Representative FTIR spectra of individual minerals (hematite, feldspar, quartz, calcite, montmorillonite and kaolinite) of sample no: 1, 21, 41, 61, 81, 101 and 111

3.13 Percentage of average value of extinction coefficient in various sites of (a) Overall Area, (b) Vehicular Area, (c) Residential Area (d) and Industrial Area

3.14 The extinction co-efficient values for (a) hematite, (b) feldspar, (c) calcite, (d) montmorillonite, (e) kaolinite and (f) quartz in vehicular area

3.15 The extinction co-efficient values for (a) hematite, (b) feldspar, (c) calcite, (d) montmorillonite, (e) kaolinite and (f) quartz in Residential area

3.16 The extinction co-efficient values for (a) hematite, (b) feldspar, (c) calcite, (d) montmorillonite, (e) kaolinite and (f) quartz in Industrial area

3.17 The variation of Crystallinity Index of Quartz (a) in Vehicular Area, (b) in Residential Area and (c) in Industrial Area

4.1 XRD diffractogram of the minerals present in Sample number 23

4.2 XRD diffractogram of the minerals present in Sample number 49
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>XRD diffractogram of the minerals present in Sample number 70</td>
</tr>
<tr>
<td>4.4</td>
<td>XRD diffractogram of the minerals present in Sample number 82</td>
</tr>
<tr>
<td>4.5</td>
<td>XRD diffractogram of the minerals present in Sample number 86</td>
</tr>
<tr>
<td>4.6</td>
<td>XRD diffractogram of the minerals present in Sample number 111</td>
</tr>
<tr>
<td>4.7</td>
<td>XRD diffractogram of the minerals present in Sample number 25</td>
</tr>
<tr>
<td>4.8</td>
<td>XRD diffractogram of the minerals present in Sample number 50</td>
</tr>
<tr>
<td>4.9</td>
<td>XRD diffractogram of the minerals present in Sample number 72</td>
</tr>
<tr>
<td>4.10</td>
<td>XRD diffractogram of the minerals present in Sample number 83</td>
</tr>
<tr>
<td>4.11</td>
<td>XRD diffractogram of the minerals present in Sample number 87</td>
</tr>
<tr>
<td>4.12</td>
<td>XRD diffractogram of the minerals present in Sample number 110</td>
</tr>
<tr>
<td>4.13</td>
<td>XRD diffractogram of the minerals present in Sample number 26</td>
</tr>
<tr>
<td>4.14</td>
<td>XRD diffractogram of the minerals present in Sample number 51</td>
</tr>
<tr>
<td>4.15</td>
<td>XRD diffractogram of the minerals present in Sample number 73</td>
</tr>
<tr>
<td>4.16</td>
<td>XRD diffractogram of the minerals present in Sample number 85</td>
</tr>
</tbody>
</table>
4.17 XRD diffractogram of the minerals present in Sample number 89
4.18 XRD diffractogram of the minerals present in Sample number 109
5.1 The various sample collected places and concentrations (%) of Na mineral for Vehicular Area, Residential Area and Industrial Area
5.2 The various sample collected places and concentrations (%) of Pb mineral for Vehicular Area, Residential Area and Industrial Area
5.3 The various sample collected places and concentrations (%) of Mn mineral for Vehicular Area, Residential Area and Industrial Area
5.4 The various sample collected places and concentrations (%) of K mineral for Vehicular Area, Residential Area and Industrial Area
5.5 The various sample collected places and concentrations (%) of Fe mineral for Vehicular Area, Residential Area and Industrial Area
5.6 The various sample collected places and concentrations (%) of Al mineral for Vehicular Area, Residential Area and Industrial Area
5.7 The various sample collected places and concentrations (%) of Ca mineral for Vehicular Area, Residential Area and Industrial Area

5.8 The various sample collected places and concentrations (%) of Mg mineral for Vehicular Area, Residential Area and Industrial Area

5.9 The various sample collected places and concentrations (%) of Si mineral for Vehicular Area, Residential Area and Industrial Area

5.10 The plot of enrichment factor of different element at various locations in vehicular Area

5.11 The plot of enrichment factor of different element at various locations in residential Area

5.12 The plot of enrichment factor of different element at various locations in industrial Area

6.1 The Box chart of magnetic S – Ratio, H_{CR}, κ_{ARM}/κ and SIRM/χ measurements for Vehicular Area

6.2 The Box chart of magnetic S – Ratio, H_{CR}, κ_{ARM}/κ and SIRM/χ measurements for Residential Area
6.3 The Box chart of magnetic S – Ratio, H_{CR}, κ_{ARM}/κ and SIRM/χ measurements for Industrial Area 201

6.4 Measurements of acquisition IRM for selected samples (a) IRM and (b) gradient of IRM 203

6.5 King’s Plot (χ_{ARM} versus χ) for all samples. Most of the samples are between 1 and 5 μm 204

6.6 The magnetic concentration parameters χ, ARM, SIRM and χ_{ARM} for Vehicular Area 205

6.7 The magnetic concentration parameters χ, ARM, SIRM and χ_{ARM} for Residential Area 206

6.8 The magnetic concentration parameters χ, ARM, SIRM and χ_{ARM} for Industrial Area 206

6.9 Spatial distribution of χ (magnetic concentration-dependent parameter) for each area (residential, vehicular and industrial), (ARM and SIRM), magnetic mineralogy-dependent parameters (H_{CR} and SIRM/χ) and magnetic grain size-dependent parameters (κ_{ARM}/κ-ratio and κ_{FD}%) 208

6.10 The grain size parameters κ_{FD}% and ARM/SIRM for Vehicular Area 210

6.11 The grain size parameters κ_{FD}% and ARM/SIRM for Residential Area 210

6.12 The grain size parameters κ_{FD}% and ARM/SIRM for Industrial Area 211

6.13 Principle Compound Analyses 214
6.14 Representation of the CA on the principal component map 216

7.1 The SEM image of fine (2µm, 3 µm) Particulate matter of sample number 23 (Vehicular area) 221

7.2 The SEM image of fine (2µm, 3 µm) Particulate matter of sample number 70 (Vehicular area) 221

7.3 The SEM image of fine (3µm, 1 µm) Particulate matter of sample number 82 (Vehicular area) 221

7.4 The SEM image of fine (2µm, 5 µm) Particulate matter of sample number 86 (Vehicular area) 222

7.5 The SEM image of fine (1µm, 5 µm) Particulate matter of sample number 111 (Vehicular area) 222

7.6 The SEM image of fine (5µm, 3 µm) Particulate matter of sample number 26 (Industrial area) 222

7.7 The SEM image of fine (5µm, 3 µm) Particulate matter of sample number 73 (Industrial area) 223

7.8 The SEM image of fine (1µm, 500 nm) Particulate matter of sample number 85 (Industrial area) 223

7.9 The SEM image of fine (2µm, 5 µm) Particulate matter of sample number 89 (Industrial area) 223
7.10 The SEM image of fine (1µm, 5 µm) Particulate matter of sample number 109 (Industrial area) 224
7.11 The SEM image of fine (2µm, 5 µm) Particulate matter of sample number 25 (Residential area) 224
7.12 The SEM image of fine (3µm, 4 µm) Particulate matter of sample number 72 (Residential area) 224
7.13 The SEM image of fine (3µm, 1 µm) Particulate matter of sample number 83 (Residential area) 225
7.14 The SEM image of fine (2µm, 5 µm) Particulate matter of sample number 87 (Residential area) 225
7.15 The SEM image of fine (1µ m, 5 µm) Particulate matter of sample number 110 (Residential area) 225
7.16 The SEM image and corresponding EDX spectrum of the sample number 23 (Vehicular area) 229
7.17 The SEM image and corresponding EDX spectrum of the sample number 70 (Vehicular area) 229
7.18 The SEM image and corresponding EDX spectrum of the sample number 82 (Vehicular area) 229
7.19 The SEM image and corresponding EDX spectrum of the sample number 26 (Industrial area)
7.20 The SEM image and corresponding EDX spectrum of the sample number 73 (Industrial area)
7.21 The SEM image and corresponding EDX spectrum of the sample number 85 (Industrial area)
7.22 The SEM image and corresponding EDX spectrum of the sample number 25 (Residential area)
7.23 The SEM image and corresponding EDX spectrum of the sample number 72 (Residential area)
7.24 The SEM image and corresponding EDX spectrum of the sample number 83 (Residential area)
7.25 The Elements and corresponding weight % present in the selected samples in Industrial area
7.26 The Elements and corresponding Weight % present in the selected samples in Vehicular area
7.27 The Elements and corresponding Weight % present in the selected samples in Residential area
8.1 The positive correlation of feldspar and calcite with crystallinity index in vehicular (a), residential (b) and industrial area(c)

8.2 The correlation of magnetic measurements and crystallinity index in vehicular (a), residential (b) and industrial area(c)

8.3 Correlation of concentration of elements and crystallinity index in vehicular (a), residential (b) and industrial area(c)

8.4 Correlation of susceptibility and concentration of elements in vehicular (a), residential (b) and industrial area(c)

8.5 Dendrogram showing clustering among the variables in Vehicular area

8.6 Dendrogram showing clustering among the variables in Residential area

8.7 Dendrogram showing clustering among the variables in Industrial area