ABSTRACT

Agriculture is the science of cultivating the soil in order to grow the crops, dairy farming, poultry farming, piggeries and other allied activities, whereas development is a process of change aiming at socio-economic transformation of traditional society into modern one which is greatly influenced by human beings. Agriculture is one of the oldest and prime activities of the human being. It is the prime source of food to the people. In spite of growing industrialization and urbanization in the world, nearly fifty per cent working population still engaged in agriculture. The basic aim of agriculture is to provide adequate food to large and fast growing population of the country as well as raw materials to various agro based industries. It is the manifestation of the combined effect of many factors like physical, environmental, technological and institutional. Agriculture constitutes an important activity of people to earn livelihood in Malda. Agricultural development increases the purchasing power of the rural poor and helps in the growth of non-agricultural sector.

Agriculture in India through its multifarious relationships has bearing on the industrial, urban, technological and social development. Agriculture was started near about 10,000 B.C. Present day agriculture in India, as in other countries representing ancient civilizations, has evolved itself through ages. The origin and development of agriculture witnessed a boom in agriculture and trade much before significant developments took place as a result of the application of modern scientific methods in agriculture. During the early periods, an increase in production of food and other agricultural commodities came about mainly by increasing the area under cultivation. There has been an awareness all over the world, especially since the last 200 years, that the land resources are not unlimited and that in the business farming too the law of diminishing returns operates as it does elsewhere. In spite of this despair looming large all over the world, it has been possible so far, to meet the needs of the increasing population although catastrophes have resulted on some occasions. Agriculture itself is a system composed of multiple components. Agricultural development may constitute as one of the very important and dynamic component of socio-economic transformation. Because it provides increase of food surplus to the growing population helps to expand the secondary and tertiary sectors, which raises the rural income and purchasing power which transform the society and improve the welfare of
Abstract

the population of the region. Land use is one of the vital aspects of development in agriculture fields, which is a multi-dimensional concept. Diffusion of agriculture innovation has a very strong bearing upon the agricultural efficiency and productivity in any region. Diffusion of agriculture innovation varies from one social system to another and also within the social system itself because of the way in which it is perceived is more important. Keeping this view in mind an attempt has been made to examine the level of agricultural development and its impact on socio-economic transformation in Malda district of West Bengal.

Objectives of the Study:

The main objectives of my study are as follows:

- To analyze the importance of physical setting of the region that facilitates the basic necessities for agricultural practices.
- To analyze the land use pattern, cropping intensity and growth rate in area, production and yield of major crops in the study region.
- To examine the spatial pattern of crop combination regions in the study area.
- To assess the spread and diffusion of technological and institutional factors in the study area.
- To measure the agricultural productivity in the study region.
- To measure the level of agricultural development in the study region.
- To identify the level of socio-economic transformation in the study area.
- To assess the impact of agricultural development on socio-economic transformation.

Research Hypotheses:

- Agricultural development of the study region is directly related to agricultural technology.
- The farmers having adequate and assured irrigation are more adoptive of agricultural technology as compared to others.
- Socio-economic transformation is positively related to agricultural development.

Database:

The present study is based on secondary as well as primary sources of data. The data has been carried out for the period from 2000-2001 to 2010-2011.
The secondary data has been obtained from:

- Bureau of Applied Economics and Statistics, Govt. of W.B., Kolkata,
- Evaluation Wings, Directorate of Agriculture, Govt. of W.B., Kolkata,
- Statistical Handbook of Malda District,
- Statistical Abstract of Malda District,
- Census of India and
- Unpublished record of the public administration of government offices.

Methodology:

The following methods have been used for the study:

- Descriptive approach has been adopted to put down the account of physio-cultural account of Malda district.
- Gibbs-Martin index of crop diversification has been used to find out the different regions of crop diversification.
- J. C Weaver’s Least Square Method has been used to find out different crop combination regions.
- To process and analyse the data Z score and correlation techniques have been used. Standard Z Score represented by

\[Z = \frac{X - \bar{X}}{\sigma} \]

Where,

- \(Z \) = Standard Score
- \(X \) = original value of the observation
- \(\bar{X} \) = Mean of all variable of \(X \)
- \(\sigma \) = Standard Deviation of \(X \)
- After standardized the variables, its score has been added together for each block and divided with number of variables considered which give the composite score of that blocks. The composite standard score is expressed as:

\[C.S. = \frac{\sum Z_{ij}}{N} \]
Abstract

Where:

\[C.S. = \text{Composite Score}, \]
\[N = \text{No of variables}, \]
\[\Sigma Z_{ij} = Z \text{- score of all variables i in district j}. \]

- The indices of crop productivity have been calculated on the basis of Yang’s yield index method for two periods 2000-01 and 2010-11. To compute agricultural productivity the present study is based on Yang’s ‘Crop Yield Index’ method (1965) due to the fact that it considers the yield of all crops compared with the average yield of crops in the entire region. Initially it is needed to take the yields of all the crops considered in the district and compare them with the average yields of the same crops grown in the state, the average yield of each of crop cultivated in the entire region should be considered. Then, by dividing the yield per hectare of a crop in the district by the average yield of the same crop in the state, a percentage figure is obtained, which is multiplied by 100, gives an index number, as shown in column 5 of Table 1. By incorporating the area devoted to each crop as a weight to multiply this with the percentage index, the products are obtained as listed in column 6 of the table. By adding the products (of column 6) and dividing the sum of products by the total of crop area in the district (the sum of column 4).

Table 1: Methodology of Calculating Crop Yield Index Method as proposed by W.M. Yangs'

<table>
<thead>
<tr>
<th>Name of Crops</th>
<th>Area of Crops in the Block in hec</th>
<th>Yield in kg per hectare</th>
<th>Crop yield in the distt.as % to the region</th>
<th>Percentage multiplied by area in hec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average yield</td>
<td>Average yield</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>in the block</td>
<td>in the district</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5=Col.3/Col.4x10^0</td>
</tr>
<tr>
<td>Rice</td>
<td>6021</td>
<td>7665</td>
<td>3140</td>
<td>244.12</td>
</tr>
<tr>
<td>Wheat</td>
<td>7631</td>
<td>3909</td>
<td>3027</td>
<td>129.15</td>
</tr>
<tr>
<td>Masur</td>
<td>428</td>
<td>1024</td>
<td>983</td>
<td>104.18</td>
</tr>
<tr>
<td>Maskalai</td>
<td>1829</td>
<td>1571</td>
<td>917</td>
<td>171.36</td>
</tr>
<tr>
<td>Khesari</td>
<td>257</td>
<td>1107</td>
<td>916</td>
<td>120.85</td>
</tr>
<tr>
<td>Gram</td>
<td>716</td>
<td>1101</td>
<td>1096</td>
<td>100.42</td>
</tr>
<tr>
<td>R & M</td>
<td>3046</td>
<td>1030</td>
<td>1094</td>
<td>94.15</td>
</tr>
<tr>
<td>Sesamum(Til)</td>
<td>52</td>
<td>600</td>
<td>360</td>
<td>166.67</td>
</tr>
<tr>
<td>Potato</td>
<td>189</td>
<td>22309</td>
<td>28835</td>
<td>77.37</td>
</tr>
<tr>
<td>Jute</td>
<td>1509</td>
<td>2194</td>
<td>2696.00</td>
<td>81.38</td>
</tr>
<tr>
<td>Total</td>
<td>21678</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Computation of Crop Yield Index of Kaliachak-III Block = 3349213.36/21678 = 154.50

Source: Yang, W.M. (1965): Methods of Farm Management Investigation For Improving Farm Productivity, No. 80, F.A.O., Rome
For measuring agricultural development 22 variables were taken at block level. Composite Index was used to calculate agricultural development in Malda district.

In addition to the above mentioned methods other methods like Karl Pearson’s coefficient of correlation (r) and Factor Analysis with the help of SPSS have been used.

For conducting primary survey, the sampled derived for the study is based on purposive random sampling technique. For the quantification of socio-economic transformation 30 respondents were interviewed from each of 15 villages of the district i.e. one village from each block of the district. Therefore, total 450 respondents were surveyed. These villages have been selected on the basis of following criteria:

i. The village should be, as far as possible, the representative of its own region especially with respect to the concentration of agricultural occupational structure because the focus in this study was on agricultural development and socio-economic transformation.

ii. The village should be easily accessible by road.

iii. The village should be inhabited by the different caste and religion.

iv. The village should be having minimum 250 households.

After completing field survey of selected villages, the processing of data was carried out, first of all entries of questionnaire were done.

Moreover, Arc View 3.2 software has been used for digitization of relevant maps and diagrams and necessary analysis are being carried out to acquire meaningful results. The other important steps like cartographic works in preparing maps, diagrams, graphs, charts, report writing, data processing and analysis, have been carried out through computer operations.

Study Area:

For the present study Malda district of West Bengal has been taken which lies between latitudinal and longitudinal figures of $24^\circ 40' 20'' N$ to $25^\circ 32' 08'' N$ and $87^\circ 45' 50'' E$ to $88^\circ 28' 10'' E$ respectively and surrounded by Bangladesh and Dakhsin Dinajpur in East, Santhal Parganas of State of Jharkhand in West, Uttar Dinajpur in North and Murshidabad in South. The district of Malda has total area of 3733 sq.km
Abstract

(Census 2011) and the total population of Malda district is 39,88,845 (Census 2011). For administrative purpose the district has been divided into fifteen Blocks. Three broad sub-regions can be defined physiographically within Malda district on the basis of nature of topography and soil, i.e. Tal, Barind and Diara. Tal region consists of 6 community development blocks namely, Harishchandrapur-I, Harishchandrapur-II, Chanchal-I, Chanchal-II, Ratua-I and Ratua-II whereas Barind region comprises the blocks of Old Malda, Gazole, Bamongola and Habibpur. The southern part of the district consists of 5 community development blocks namely, English Bazar, Manikchak, Kaliachak-I, Kaliachak-II and Kaliachak-III is known as Diara region.

Organization of Research Work:

The present study “Level of Agricultural development and its impact on Socio-Economic Transformation – A case study of Malda district (W.B.)” has been organized into seven chapters these are as follows:

- **Chapter first** deals with the various physio-cultural setting of the study area which includes locational extent, relief and topography, soil characteristics, drainage system, climate, natural vegetation, population growth and density, literacy, sex-ratio and transportation system of the study area.

- **Chapter second** focuses on conceptual framework and literature review

- **Chapter third** deals with the dynamics of agriculture

- **Chapter fourth** describes the spatial distribution of technological and institutional factors

- **Chapter five** is devoted to measurement of agricultural productivity

- **Chapter six** focuses on the level of agricultural development

- **Chapter seven** is devoted to socio-economic transformation - a micro level analysis

- At last researcher has incorporated conclusion and suggestions regarding the development of agriculture in Malda district.
Malda district has been an important agricultural district since antiquity and commands, dense human settlements within its boundaries due to abundance of rivers (both large and small) and consequent alluvial soils. Rice cultivation has traditionally been high in the district, making it the breadbasket of Bengal. Shifting rivers and overall ecological changes have however, left an inevitable stamp on the present patterns of human settlement, as a consequence of which settlement density varies considerably across the district. The region on the other hand was in earlier times sparsely habituated and had a substantial forest cover. The overall growth of agriculture and allied sectors in Malda has been very slow. Slow growth is a matter of serious impediment towards the target for achieving 4% annual growth in agriculture.

The land use classification of Malda has been made with a view to derive maximum benefits from each type of land whether agricultural or non-agricultural. During the study period, positive changes have been noticed in non-agricultural uses, land under miscellaneous uses, culturable waste land and fallow land other than current fallow, whereas negative changes have been observed in current fallow and net sown area. The proportion of net sown area has sharply declined from 222.91 thousand hectares in 2000-01 to 217.98 thousand hectares in 2010-11. This ought to be declined because of urbanization, construction of buildings and developmental works (roads, railways etc.). Cropping patterns of a region are the extent to which the arable land under different agricultural activities can be put to use. The agricultural fields of Malda district are dominated by the cultivation of foodgrains (cereals and pulses). Among the foodgrain crops, rice (*Oryza Sativa*) is the main staple food in this area and also dominate the district’s agricultural landscape covering about more than half of the district’s total cropped area. It is observed that the area under foodgrains, oilseeds and cash crops decreased during the study period. The reasons behind decrease in crop production of the district are seasonal migration of the people to other state in search of alternative works, less involvement towards agricultural practices, low return from the field and fear of crop loss. During 2000-01, cereals occupied 74.19 percent while pulses occupied only 9.26 percent. Oilseeds covers 9.41 percent and cash crops covers only 7.14 percent of the district. In the year of 2010-11, cereals occupied 75.50 percent while pulses occupied only 5.67 percent in the district as a whole. In case of oilseeds, it covers 10.76 per cent and cash crop covers only 8.08 per cent.
The growth rate of area under major crops has been decreased during the study period except potato. The growth rate of area, production and yield under potato has been tremendously increased during the study period. A comparative analysis reveals that the area under rice crop has grown significantly due to spatial diffusion of technology and development in irrigational facility. Although there is no clear trend in case of other crops but they also appear to have grown in terms of area during the last ten years. It is all because of the availability of water for irrigation. After paddy and wheat, oilseeds and pulses are the other most dominant food crops. The area under pulses also appears to have marginal decreased in size.

The index of intensity of cropping in the district was 150 percent in 2000-01, which has increased to 183 percent in 2010-11 which is a sign of healthy agricultural economy. Though for the Malda district the index of intensity of cropping is 183, but there are significant variations across the district.

During the period of 2000-01 the higher level of crop diversification has been found in Ratua-I, Ratua-II, Manikchak, Kaliachak-I, Kaliachak-II and Kaliachak-III. Moderate level of crop diversification has covered Harishchandrapur-I, Chanchal-I, Chanchal-II, Bamongola, Old Malda and English Bazar whereas lower level of crop diversification was in Harishchandrapur-II, Gazole and Habibpur. In 2010-11 the higher level of crop diversification has been registered in Ratua-I, Ratua-II, English Bazar, Manikchak, Kaliachak-I, Kaliachak-II and Kaliachak-III. Blocks under moderate level of crop diversification include only two blocks i.e. Harishchandrapur-I and Chanchal-I. The low level of crop diversification has found in Harishchandrapur-II, Chanchal-II, Gazole, Bamongola, Habibpur and Old Malda.

Crop combination regions were worked out keeping in view the importance of integrated assemblage of various crops grown for planning purposes. It has been observed during the study periods i.e. 2000-2001 and 2010-2011 that crop combination ranges from mono crop to eight crops in the entire Malda district. With the passage of time, and the demand, blocks are approaching towards specialization of crops cultivation. For instance the blocks of Ratua-I having three crop combination (Rice, Wheat and Jute) during 2000-01. Later on in 2010-11, the block shows two crop combination (Rice and Wheat). Block of Ratua-II was having eight crop combination (Rice followed by Wheat, Jute, R & M, Masur, Khesari, Maskalai and
Abstract

Gram) during 2000-01, its crop combination restricted to seven crop combination (Rice, Wheat, R&M, Jute, Masur, Gram and Maskalai) during 2010-11. The block of Bamongola have two crop combination (Rice and R&M) during 2000-01. Later on in 2010-11, it shows monoculture (Rice). Kaliachak-I block having five crop combination (Rice, Wheat, Maskalai, R&M and Jute) during 2000-01. During 2010-11, the block shows four crop combination (Wheat, Rice, Jute and R&M). Block of Kaliachak-III shows eight crop combination (Wheat is the dominant crop, followed by Rice, Gram, Maskalai, Jute, Masur, R&M and Khesari during 2000-01, later on in 2010-11, the block having only four crop combination (Rice, R&M, Maskalai and Jute).

Technological and institutional factors are strong inputs for the better productivity of land because their use increases the farm efficiency, saves time and minimize production cost. The type of machinery is changing fast; the older ones are replaced by the better performing the newer ones leading to further increase farm efficiency and farm output. It is, therefore, better to examine the position of farm machinery in different periods of time for assessing the nature of agricultural development in the study region. The agricultural machinery used for agricultural purposes in Malda relates to tractor, power tiller, pumpset, thresher, laveller and sprayer or duster. The use of these modern agricultural implements has increased during the last decades. Therefore, the number of these implements per 10,000 hectares of gross cropped area has also been increased in both the study period.

The farmers have gradually become aware of the benefit of fertilizer application and has therefore progressively increased it’s per hectare consumption of fertilizers in the region. The actual quantity of fertilizers applied in 2000-01 was 43.30 kg per hectare but it rose up to 99.10 kg hectare in 2010-11. Tube wells are the major source of irrigation in the study area but there are a lot of variations at block level. Shallow tube well is the major sources of irrigation of the study area. The farmers have been tempted to switch over from traditional to modern agricultural especially in those blocks where irrigational facility has improved. The pace of change is slow but it has been set into motion. In the view of rising cost of chemical fertilizers and the large amount of subsidies given to farmers, it is felt that natural waste and by products of crops could be a good source of organic matter to increase
the fertility of soil. Waste products include animal dung, bagasse, weeds, straw, sewage, sludge, rice husks and seed weeds. The composition and recycling of these waste products would provide cheap and ideal organic manure to the soil. Bio fertilizers are considered as an effective, cheap and renewable supplement to the chemical fertilizers. Rhizobium has been found to be effective for pulses and pulses.

The total number of agricultural labourers is increasing and the percentage of agricultural labourers to the total workers is also increasing during the periods in Malda district. The number of agricultural labourers was 246420 in the year 2001 in the region but it raised up to 322151 in 2011. The share of agricultural workers to the total workers was 19.40 per cent in 2001, but it increased to 22.42 per cent agricultural labourers in 2011. The percentage of literates to total population in the district has gone up from 50.28 percent in 2001 to 61.73 percent in 2011. The share of co-operative societies to the ten thousand populations was 1.90 per cent in 2001, and it decreased to 1.13 per cent co-operative societies in 2011. It is clear that the percentage of co-operative societies and their percentage to ten thousand populations are decreasing almost in every block (except Bamongola block) of the district during 2001 to 2011 Census year.

To delineate the general pattern of productivity and demarcate high, medium and low productivity regions a composite yield index computed for fifteen blocks of Malda district in 2000-2001 and 2010-2011 respectively. It is quite clear that during the last decade, high productivity area under cereals has recorded a significant increase i.e. 3450 hectares, while medium and low productivity area suffered with a great loss by 27770 hectares and 35038 hectares respectively. The increase in terms of percentage was 2.57 per cent for high productivity, and decrease in terms of percentage was 60.66 per cent for medium productivity and 99.08 per cent for low productivity. Thus the area under high, medium and low productivity of cereals on the whole shows a mixture of positive as well as negative sign. On the whole, the productivity area under cereals has declined by 59358 hectares (27.55 per cent), while the productivity area under pulses also decreased by 18119 hectares (112.05 per cent). The productivity area under oilseeds and cash crops has shown significant increase by 4176 hectares (13.61 per cent) and 3385 hectares (14.68 per cent) respectively. The overall productivity is also decreased by 85038 hectares (29.80 per cent). It may be
seen from the analysis that farmers are highly inclined towards the cultivation of oilseeds and cash crops rather than cereals and pulses, because these crops give maximum returns to the farmers. Agricultural performance in the district is characterized with marked productivity variations. Among small and marginal farmers, agricultural productivity is hampered by poor logistical support and weak infrastructure. These variations in productivity are influenced by the physical and socio-economic factors.

The factor analysis of the variables for the year 2000-2001 indicates that 75.18 percent of the total variance is explained by three factors. Factor 1 explains 28.44 percent of the total variance. The positive signs of the variables are associated with the higher development of agriculture. Factor 2 accounts for 17.30 per cent of the total variance explained, while Factor 3 accounts for 12.33 per cent of the total variance explained.

During 2010-2011, the factor analysis of the variables indicates that 74.87 percent of the total variance is explained by three factors. Factor 1 explains 28.45 per cent of the total variance. Factor 2 explains for 21.18 per cent of the total variance is composed of three variables of high positive loading of more than 0.500. Factor 3 accounts for 13.47 per cent of the total variance explained.

For determining the spatial pattern and level of agricultural development, 22 variables have been selected which may be considered as the important variables of agricultural development. To determine the overall spatial pattern and the level of agricultural development, the data related to the 22 variables were transformed and combined using Z-score technique, and the development districts were classified into three development levels on the basis of their composite score. There is a spatial and temporal variations in the level of Agricultural Development in Malda district during the study period. Based on composite Z-score, it has been divided into high, medium and low level of agricultural development for the two periods, i.e. 2000-2001 and 2010-2011. It has been observed that even after a lapse of ten years, there is slight change in the spatial pattern of high medium and low levels of agricultural development.
During 2000-01, high level of agricultural development lies in north-central and eastern part of the region. The medium level of agricultural development spread over northern part and south-central part of the study region. The low level of agricultural development found in the north, south-eastern, western and southern part of the region.

During 2010-11, high level of agricultural development i.e. (> +0.13) lies in northern, eastern part of the study region. The medium level of agricultural found in the south-eastern part of the study region. The low level of agricultural development lies in the central, western and southern part of the region. The farmers belonging to the blocks of high level of agricultural development having the facilities of large share of net sown area, high irrigation and cropping intensity, high productivity, fertile soil and better agricultural technology, while in the low levels of agricultural development, the impact of these variables are comparatively low. To earn more returns, the farmers of this region adopted the cultivation of horticulture rather than crop production.

The blocks witnessed a slight improvement in the levels of agricultural development in the blocks during the last decade i.e. 2000-01 to 2010-11. The study reveals that there were only five blocks namely Chanchal-I, Ratua-II, Gazole, Bamongola and Habibpur have high level of agricultural development in both the study period. Only Kaliachak-II block emerged with high levels of agricultural development in from 2000-01 to 2010-11.

During both the year high level of socio-economic development found in the blocks of Gazole, Bamongola and Habibpur. In the year of 2010-11, Kaliachak-II block emerged as a medium level of socio-economic development from low level of socio-economic development.

There is a positive impact of agricultural development in the development of socio-economic condition of the people of the district. It is clear that those block have high level of agricultural development, they have also high level of socio-economic development and vice-versa. It means that agricultural development leads to socio-economic development.
Socio-economic conditions reflect the quality of life of the society as a whole as well as that of its constituents. The major components of socio-economic life of the people in any society are the level of per capita income, income pattern, consumption and saving pattern, housing conditions, level of literacy, attitude towards marriage, sex ratio and position of women.

It has been observed that rural people have high ambitions and aspirations regarding not only for the education of their children but also for their jobs. There have been considerable changes in various social parameters in the study region. Among various social parameters changing attitude of the respondents towards education, marriage, family planning, political awareness and involvement has been considered. It is also found that the respondents are also concerned about the preference of schools for their children but there is a lot of variation at spatial level. The attitude towards various aspects of marriage such as child marriage, widow marriage and inter caste marriage has undergone a major change. Various ritual of marriage have not only changed but have become more simple and modernised. They are becoming more liberal and more receptive to modern ideologies.

Religion is a very important social indicator which provides a very strong bond of social fabric among the masses. But with the increase in the level of education, the attitude towards religion is changing. The people are becoming more liberal, less superstitious and less orthodox. They are now more receptive to new ideas and practices. Per capita income is a very good indicator for the assessment of economic status of the respondent but it is very difficult to workout per capita income.

Younger generation accounting about 41 percent of the total respondents has also high level of socio-economic transformation. The composite index in case of younger people is 3.18, whereas it is only 1.63 for older people. Hence, it may safely be inferred that \textit{level and rate of socio-economic transformation is more among younger generation than the older ones}.

An attempt has also been made to work out the composite index of socio-economic transformation of economically well of and poor respondents 27 percent and 73 percent of the total respondent respectively. The composite of the former ones is 3.84, while it is 1.97 in case of later. Hence, it proves that the \textit{level and rate of socio-economic transformation is more among economically well of respondents as compared to poor ones}.
Another difference in the level of socio-economic transformation is found at the differential level of education. The results show that the educated respondents which account 44 percent of the total respondents have a composite index of 4.01, while corresponding figure is 1.93 in case of illiterate respondents. It also proves that *level and rate of socio-economic transformation is more among educated people as compared to illiterate people.*

A remarkable variation has been observed in the level of agricultural development among the selected villages. There are three villages reported high level of agricultural development, seven villages medium and five villages recorded low level of agricultural development. There has been marked variation observed in the level of transformation in selected villages. There are three villages which have high level of transformation, seven villages medium level and five villages have low level of transformation.

The relationship between agriculture and socio-economic transformation reveals that that village where agricultural development is high, socio-economic transformation is also high and vice versa. It means that there is integrated development between agriculture and socio-economic transformation. Therefore, it is proved that agricultural development has a great impact on the socio-economic transformation in the villages of the Malda district.