TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

ABSTRACT v

LIST OF TABLES xv

LIST OF FIGURES xviii

LIST OF SYMBOLS AND ABBREVIATIONS xxvii

1 INTRODUCTION 1

1.1 ADDITIVE MANUFACTURING 1

1.1.1 Rapid prototyping to additive manufacturing 3

1.1.2 Additive manufacturing process sequence 5

1.1.3 Classification 8

1.1.3.1 Vat polymerization 8

1.1.3.2 Material extrusion 9

1.1.3.3 Sheet lamination 11

1.1.3.4 Powder bed fusion 12

1.1.3.5 Binder jetting 13

1.1.3.6 Material jetting 15

1.1.3.7 Directed energy deposition 15

1.1.4 ADVANTAGES 16

1.1.5 APPLICATIONS 18

1.1.6 LIMITATIONS 23

1.2 MULTI MATERIAL STRUCTURE 24

1.2.1 Manufacturing of multi material structure 25

1.2.1.1 Moulding 26

1.2.1.2 Welding 27

1.2.1.3 Powder Metallurgy 28

1.2.1.4 Coating 28

1.2.1.5 Additive Manufacturing 29
1.2.2 APPLICATION

1.3 STRUCTURE OF THE THESIS

2 LITERATURE SURVEY

2.1 INTRODUCTION

2.1.1 Modelling of multi material structure

2.1.1.1 Graded type multi material structure

2.1.1.2 Discrete type multi material structure

2.1.2 Fabrication of multi material structure

2.1.3 Characterization of multi material structure

2.1.4 Finite element analysis for multi material structure

2.2 RESEARCH GAP AND OBJECTIVE OF THE THESIS

2.3 SCOPE OF THESIS WORK

3 MODELLING OF MULTI MATERIAL STRUCTURE

3.1 INTRODUCTION

3.2 RANDOM REINFORCED MULTI MATERIAL STRUCTURE

3.3 DIRECTIONAL REINFORCED MULTI MATERIAL STRUCTURE

4 EXPERIMENTATION

4.1 INTRODUCTION

4.2 METHODS AND MATERIALS

4.2.1 Selection of additive manufacturing technique

4.2.2 Polyjet 3D printing process

4.2.3 Selection of materials

4.3 FABRICATION

4.3.1 Equipment specification

4.3.2 Wall and layer thickness

4.3.3 Part orientation

4.3.4 Support structure
4.4 CHARACTERIZATION OF MECHANICAL PROPERTIES

4.4.1 Tensile test 86
4.4.2 Shear test 90
4.4.3 Flexural test 93
4.4.4 Fracture surface morphology analysis 95

5 ANALYTICAL METHOD

5.1 INTRODUCTION 97
5.2 MICRO MECHANICAL AND MACRO MECHANICAL MODEL FOR MULTI MATERIAL STRUCTURE 98
5.2.1 Rule of mixture equation 99
5.2.2 Stress-strain relationship 108
5.2.3 Property transformation matrix 113
5.2.4 Classical lamination theory – micro mechanical approach 118
5.3 MULTI MATERIAL STRUCTURE WITH UNIDIRECTIONAL REINFORCEMENT 128
5.4 MULTI MATERIAL STRUCTURE WITH MULTI DIRECTIONAL REINFORCEMENT 129
5.4.1 Symmetrical laminates 130
5.4.2 Cross ply laminates 130
5.4.3 Angle ply laminates 131
5.4.4 Quasi-isotropic ply laminates 131

6 NUMERICAL METHOD

6.1 INTRODUCTION 132
6.2 COMPOSITE LAYUP MODELLING 132
6.2.1 Material properties 133
6.2.2 Reinforcement Orientation 135
6.2.3 Layer thickness 135
6.3 SELECTION OF ELEMENT 138
6.4 BOUNDARY CONDITIONS 139

7 RESULTS AND DISCUSSION 142

7.1 INTRODUCTION 142

7.2 EXPERIMENTALLY DETERMINED MECHANICAL PROPERTIES OF DIRECTIONAL REINFORCED AM MM STRUCTURE 142

7.2.1 Tensile 143

7.2.1.1 Unidirectional reinforced AM MM structure 143

7.2.1.2 Fractographic Study 146

7.2.1.3 Multidirectional reinforced AM MM structure 149

7.2.1.4 Fractographic Study 151

7.2.2 Flexural 153

7.2.2.1 Unidirectional reinforced AM MM structure 153

7.2.2.2 Fractographic Study 154

7.2.2.3 Multidirectional reinforced AM MM structure 157

7.2.3 Shear 159

7.2.3.1 Unidirectional reinforced AM MM structure 159

7.2.3.2 Multidirectional reinforced AM MM structure 162

7.3 ANALYTICAL METHOD 164

7.3.1 Tensile Loading 164

7.3.1.1 Laminates analysis of unidirectional reinforced AM MM structure 164

7.3.1.2 Laminates analysis of multidirectional reinforced AM MM structure 166
7.3.2 Flexural Loading 169
 7.3.2.1 Laminates analysis of unidirectional reinforced AM MM structure 169
 7.3.2.2 Laminates analysis of multidirectional reinforced AM MM structure 171
7.4 NUMERICAL SIMULATION 173
 7.4.1 Tensile loading 174
 7.4.1.1 Simulation results of unidirectional reinforced AM MM structure models 174
 7.4.1.2 Simulation results of multidirectional reinforced AM MM models 177
 7.4.2 Flexural loading 181
 7.4.2.1 Simulation results of unidirectional reinforced AM MM models 181
 7.4.2.2 Simulation results of multidirectional reinforced AM MM models 186
7.5 COMPARISON OF ANALYTICAL AND NUMERICAL RESULTS WITH EXPERIMENTAL RESULTS 189
7.6 DISTRIBUTION OF REINFORCEMENTS IN RANDOM REINFORCED MULTI MATERIAL STRUCTURE 192
7.7 EXPERIMENTALLY DETERMINED MECHANICAL PROPERTIES OF RANDOM REINFORCED MULTI MATERIAL STRUCTURE 195
 7.7.1 Tensile 195
 7.7.2 Flexural 197
 7.7.3 Shear 198
 7.7.4 Fractographic study 200
8 CONCLUSION AND SCOPE FOR FUTURE WORK 202
 8.1 CONCLUSION 202
 8.2 SCOPE FOR FUTURE WORK 205
REFERENCES 207
LIST OF PUBLICATIONS 230