LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Map showing the different Sampling stations in Pamba River</td>
<td>52</td>
</tr>
<tr>
<td>2.2</td>
<td>Distribution of Temperature in water sample of Pamba River (°C)</td>
<td>63</td>
</tr>
<tr>
<td>2.3</td>
<td>Distribution of pH in the water sample of Pamba River</td>
<td>64</td>
</tr>
<tr>
<td>2.4</td>
<td>Distribution of Conductivity in the water sample of Pamba River</td>
<td>65</td>
</tr>
<tr>
<td>2.5</td>
<td>Distribution of Turbidity in the water sample of Pamba River</td>
<td>67</td>
</tr>
<tr>
<td>2.6</td>
<td>Distribution of Total solids in the water sample of Pamba River</td>
<td>69</td>
</tr>
<tr>
<td>2.7</td>
<td>Distribution of Dissolved solids in the water sample of Pamba River</td>
<td>70</td>
</tr>
<tr>
<td>2.8</td>
<td>Distribution of Dissolved Oxygen in the water sample of Pamba River</td>
<td>71</td>
</tr>
<tr>
<td>2.9</td>
<td>Distribution of Biochemical Oxygen Demand in the water sample of Pamba River</td>
<td>73</td>
</tr>
<tr>
<td>2.10</td>
<td>Distribution of Chemical Oxygen Demand in the water sample of Pamba River</td>
<td>74</td>
</tr>
<tr>
<td>2.11</td>
<td>Distribution of Hardness in the water sample of Pamba River</td>
<td>75</td>
</tr>
<tr>
<td>2.12</td>
<td>Distribution of Alkalinity in the water sample of Pamba River</td>
<td>76</td>
</tr>
<tr>
<td>2.13</td>
<td>Distribution of Magnesium in the water sample of Pamba River</td>
<td>78</td>
</tr>
<tr>
<td>2.14</td>
<td>Distribution of Calcium in the water sample of Pamba River</td>
<td>80</td>
</tr>
<tr>
<td>2.15</td>
<td>Distribution of Nitrates in the water sample of Pamba River</td>
<td>81</td>
</tr>
<tr>
<td>2.16</td>
<td>Distribution of Phosphorus in the water sample of Pamba River</td>
<td>82</td>
</tr>
</tbody>
</table>
2.17 Distribution of Sulphate in the water sample of Pamba River (mg/l)83
2.18 Distribution of Chloride in the water sample of Pamba River (mg/l)84
2.19 Distribution of Sodium in the water sample of Pamba River (mg/l)85
2.20 Distribution of Potassium in the water sample of Pamba River (mg/l)86
2.21 Distribution of Total Colifom in the water sample of Pamba River
 (MPN/100 ml) ...87
2.22 Distribution of Faecal Colifom in the water sample of Pamba River
 (MPN/100 ml) ...88
2.23 Distribution of Iron in the water sample of Pamba River (ppm)90
2.24 Distribution of Cadmium in the water sample of Pamba River (ppm)91
2.25 Distribution of Copper in the water sample of Pamba River (ppm)92
2.26 Distribution of Lead in the water sample of Pamba River (ppm)93
2.27 Distribution of Zinc in the water sample of Pamba River (ppm)94
2.28 Distribution of Manganese in the water sample of Pamba River
 (ppm) ..95
3.1 Effect of chlorination at different dosage on TC of the polluted
 Pamba river water sample ..140
3.2 Effect of chlorination at different dosage on BOD of the polluted
 Pamba river water sample ..140
3.3 Effect of chlorination at different dosage on COD of the polluted
 Pamba river water sample ..141
3.4 Effect of chlorination at different dosage on TOC of the polluted
 Pamba river water sample ..141
3.5 FT/IR of the ether extracted Pamba river water sample before
 chlorination – Control ..142
3.6 FT/IR of the ether extracted Pamba river water sample after
 chlorination – sample 1 ...143
3.7 FT/IR of the ether extracted Pamba river water sample after chlorination – sample 2 ... 144
3.8 FT/IR of the ether extracted Pamba river water sample after chlorination – sample 3 .. 145
3.9 GC/MS of the ether extracted Pamba river water sample before chlorination control .. 146
3.10 GC/MS of the ether extracted Pamba river water sample after chlorination- sample 1 .. 146
3.11 GC of the ether extracted Pamba river water sample after chlorination- sample 2 .. 147
3.12 MS of the peak obtained at 16.017 in the GC of the ether extracted Pamba river water sample after chlorination- sample 2 148
3.13 MS of the peak obtained at 17.798 min. in the GC of the ether extracted Pamba river water sample after chlorination- sample 2 149
3.14 GC of the ether extracted Pamba river water sample after chlorination- sample 3 .. 150
3.15 MS of the peak obtained at 17.823 min. in the GC of the ether extracted Pamba river water sample after chlorination- sample 3 151
3.16 MS of the peak obtained at 19.687 min. in the GC of the ether extracted Pamba river water sample after chlorination- sample 152
3.17 Proton NMR of the ether extracted Pamba river water sample before chlorination- Control .. 153
3.18 Carbon NMR of the ether extracted Pamba river water sample before chlorination- control .. 154
3.19 Proton NMR of the ether extracted Pamba river water sample after chlorination- sample 1 ... 155
3.20 Carbon NMR of the ether extracted Pamba river water sample after chlorination- sample 2 ... 156
3.21. Carbon NMR of the ether extracted Pamba river water sample after chlorination- sample 3 ..157

4.1 Plates showing the different stages of processing of Muringa seed for the treatment of waste water...170

4.2 Effect of Alum treatment on MPN of Pamba river water182

4.3 Effect of Alum treatment on COD of Pamba river water......................182

4.4. Effect of moringa seed powder on MPN of pampa river water sample184

4.5 Effect of muringa seed powder on COD..184

4.6 FT/IR spectrum of pamba river water sample (untreated)185

4.7 FT/IR spectrum of pamba river water sample treated with Alum185

4.8 FT/IR spectrum of pamba river water sample treated with moringa seed powder ...186

4.9 FT/IR of the ether extract of Pamba river water sample after chlorination...186

5.1 The reservoir unit of 35cm X 30cm X 50cm with 5l capacity carrying the polluted water for treatment ...201

5.2 The three single treatment units connected in series contributing to multistage treatment system for the treatment of polluted water along with the control flow unit ...201

5.3 A single treatment unit of 100 cm length in the multistage treatment system for polluted water. ...202

5.4 A single unit showing the provision for adding coagulants or flocculants for inline treatment ...203

5.5 The sedimentation and filtration unit in a single unit of multistage treatment system for polluted water ...203

5.6 The metallic supporting stand of adjus height to support the inline treatment units and supporting line ...204
5.7 The complete multistage inline water treatment system supported by the metallic stands .. 205

5.8 The silver particle coated nano filter connected to the inline multistage water treatment system ... 206

5.9 The complete multistage inline water treatment stage with nano filter connected at the end .. 206

5.10. FT/IR analysis of the polluted water sample after integrated treatment of the water sample with the combinations of Alum, Muringa seed powder followed by low dose chlorination in the multistage reactor system ... 209

5.11. MS of the peak obtained at 12.5 min in the analysis of the polluted river sample with the combinations of Alum, Muringa seed powder followed by chlorination at low dose in the multistage reactor system 210

5.12. FT/IR analysis of the polluted water sample after the integrated treatment of water sample with the combinations of Alum, Muringa seed powder, mild chlorination and followed by nanofilter treatment in the multistage reactor system ... 211

5.13. GC/MS analysis of the of the peak obtained at 11, 25 min of water sample after integrated treatment of water sample with the combinations of Alum, Muringa seed powder followed by chlorination at low dose in the multistage reactor system 212