List of Tables

Table 1.1 Top ten cumulative wind energy installed capacity in 2014-2015 (Global Wind Energy Council, 2016, 2015a) ... 4
Table 1.2 Offshore wind parks in Europe (4C offshore, 2016; European Wind Energy Association, 2009) .. 7
Table 1.3 State wise wind power installed capacity (MW) in India 2010–2016 (Central Electricity Authority, 2016) .. 9
Table 1.4 Targeted and achieved capacity of grid-interactive power in India through renewable sources of energy (Ministry of New and Renewable Energy, 2015) 10
Table 1.5 Present FIT for renewable energy sources in India (Indian renewable energy and energy efficiency policy database, 2015) .. 11
Table 1.6 Sensitivity of wind farm energy production to annual mean wind speed (Gardner et al., 2009) ... 13
Table 2.1 Description of facilities in HEMOSU-1 (Lee et al., 2013) 19
Table 2.2 Summary of studies evaluating the accuracy of satellite data for offshore ... 22
Table 2.3 Summary of studies evaluating the accuracy of reanalysis data for offshore .. 26
Table 2.4 Summary of offshore wind turbine foundation technologies applied to appropriate water depth ranges .. 29
Table 2.5 Attributes of different gridded bathymetric data sets (Marks and Smith, 2006) ... 30
Table 2.6 Summary of studies presented in literature to evaluate offshore wind power potential ... 35
Table 2.7 Summary of studies evaluating the economics of offshore wind energy 39
Table 3.1 Foundation technologies for offshore WTs as per water depth range (m) (European Wind Energy Association, 2013; Schwartz et al., 2010) 45
Table 3.2 List of anthropogenic stressors (Halpern et al., 2015) 49
Table 3.3 Details of buoys .. 51
Table 3.4 Characteristics of the selected WTs (Gamesa, 2014; Siemens, 2011) 54
Table 3.5 Mean observed and ERA-Interim wind speeds and error metrics using monthly average values ... 57
Table 3.6 Classification of seasons (India Meteorological Department, 2016) 59
Table 3.7 Estimation of area (km² and %) associated with each ocean condition category in Indian EEZ with respect to bathymetry data 67
Table 3.8 Annual energy production calculations (CF ≥ 0.25) based on bathymetry and ocean condition... 71
Table 4.1 Available technical potential (TWh) in different sea depths 84
Table 4.2 Economic potential of offshore wind (TWh) under different FIT standards 89
Table 4.3 Cost sensitivity ranges .. 95
Table 5.1 Estimation of area (km² and %) associated with each ocean condition category in the coast of western India with respect to bathymetry data 104
Table 5.2 Mean wind speed values at meteorological station (Met) and near offshore grid point of reanalysis (ERA–Interim) wind speeds at 20 m height 105
Table 5.3 Annual energy production calculations (CF ≥ 0.25) based on bathymetry and ocean condition for G128 WT .. 109
Table 5.4 Weighted average emission factor, FY 2014 – 15, in tCO₂/MWh (Central Electricity Authority, 2016) ... 113
Table 5.5 Reduction of CO₂ emissions (million tonnes CO₂) .. 113
Table C.1 Mean wind speeds and error metrics using extrapolated monthly average values of buoy and ERA-Interim at 80 m height .. 147
Table C.2 Estimated bias between buoy observations and ERA-Interim measurement at 80 m (UERA) .. 147
Table C.3 Determination of corrected wind speed (Ucorr ERA), corrected average turbine power output (Pcorr ERA) and corrected capacity factor (CFcorr ERA) using corrected bias at 80 m ... 147
Table C.4 Mean wind speeds and error metrics using monthly average values of offshore mast measurements and ERA-Interim at different height 148
Table C.5 Estimated bias between offshore mast observations and ERA-Interim measurement at 80 m (UERA) .. 149
Table C.6 Determination of corrected wind speed (Ucorr ERA), corrected power potential (Pcorr ERA) and corrected capacity factor (CFcorr ERA) using corrected bias at 80 m ... 149
List of Figures

Fig. 1.1 Global cumulative installed wind capacity 2000 – 2015 (Global Wind Energy Council, 2016) ... 5
Fig. 1.2 Global cumulative offshore wind capacity 2011 – 2015 (Global Wind Energy Council, 2016, 2015a) ... 6
Fig. 1.3 Global cumulative offshore wind capacities of various countries in 2014 and 2015 (Global Wind Energy Council, 2016, 2015a)............................. 6
Fig. 1.4 An idealised wind turbine power curve ... 14
Fig. 3.1 Methodology developed for this study ... 44
Fig. 3.2 Bathymetry of Indian EEZ based on offshore foundation technologies, along with moored buoys selected for present study. ... 46
Fig. 3.3 Classification of Indian EEZ based on cumulative human impact (various ocean conditions) on marine ecosystems. ... 50
Fig. 3.4 Turbine power curves for Siemens SWT 3.6–120 (Red), Gamesa G128–5MW (blue) .. 56
Fig. 3.5 Comparison of ERA–Interim reanalysis and Buoy wind speeds 58
Fig. 3.6 Geographical distribution of annual (a) wind speed and (b) wind power density at 80 m, based on ERA–Interim winds, for 14 years (2001–2014) 60
Fig. 3.7 Geographical distribution of (a) wind speed and (b) wind power density at 80 m in winter, based on ERA–Interim winds, for 14 years (2001–2014) 62
Fig. 3.8 Geographical distribution of (a) wind speed and (b) wind power density at 80 m in pre-monsoon, based on ERA–Interim winds, for 14 years (2001–2014) 63
Fig. 3.9 Geographical distribution of (a) wind speed and (b) wind power density at 80 m in monsoon, based on ERA–Interim winds, for 14 years (2001–2014) 64
Fig. 3.10 Geographical distribution of (a) wind speed and (b) wind power density at 80 m in post-monsoon, based on ERA–Interim winds, for 14 years (2001–2014) 65
Fig. 3.11 Geographical distribution of capacity factor based on power curve of (a) SWT–3.6–120 WT and (b) Gamesa G 128 WT over Indian EEZ. 66
Fig. 3.12 Annual energy power generation (TWh) for SWT–3.6 and G128 WT respectively (CF ≥ 0.25) based on offshore foundation technology class and cumulative human impact on marine ecosystem.. 70
Fig. 4.1 Methodology used to estimate levelized production cost 76
Fig. 4.2 Spatial distribution of wind power density over the western coast of India in W/m² ... 85
Fig. 4.3 Spatial distribution of wind power density over the eastern coast of India in W/m² ... 86
Fig. 4.4 Spatial distribution of energy potential over the western coast of India in MWh/km²/year ... 87
Fig. 4.5 Spatial distribution of energy potential over the eastern coast of India in MWh/km²/year ... 88
Fig. 4.6 Spatial distribution of LPC over study area in the west coast of India 91
Fig. 4.7 Spatial distribution of LPC over study area in the east coast of India 92
Fig. 4.8 Marginal production costs of offshore wind in different scenarios 93
Fig. 4.9 Marginal production costs of offshore wind under different ocean conditions in the western coast of India... 94
Fig. 4.10 Marginal production costs of offshore wind under different ocean conditions in the eastern coast of India. ... 95
Fig. 4.11 Sensitivity analysis of offshore wind LPC in different water depth regions over the western coast of India (Solid fill represents the reduction of parameter; Hatch fill represents the increase of parameter) ... 97
Fig. 4.12 Sensitivity analysis of the offshore wind LPC in different water depth regions over the eastern coast of India (Solid fill represents the reduction of parameter; Hatch fill represents the increase of parameter) ... 98
Fig. 5.1 Bathymetry of the EEZ region of the western coast of India classification based on offshore foundation technologies, along with near shore meteorological stations selected for the present study... 103
Fig. 5.2 Geographical distribution of (a) wind speed and (b) wind power density for the coast of western India at 80 m, based on ERA−Interim winds for 14 years (2001 – 2014). .. 106
Fig. 5.3 Geographical distribution of (a) G128 WT capacity factor and (b) Energy potential in MWh/km²/year for the coast of western India at 80 m, based on ERA−Interim winds for 14 years (2001 – 2014). .. 107
Fig. 5.4 Geographical distribution of LPC for coast of the western India, in euro per MWh .. 110
Fig. 5.5 Comparison of cumulative annual energy production at different water depth classes between India and the coast of western India .. 111
Fig. B.1 Wind speed extrapolation factor based on a logarithmic profile for different heights and roughnesses .. 141